Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1971 Mar;50(3):667–678. doi: 10.1172/JCI106537

Renal potassium wasting in renal tubular acidosis (RTA)

Its occurrence in types 1 and 2 RTA despite sustained correction of systemic acidosis

Anthony Sebastian 1,2, Elisabeth McSherry 1,2, R Curtis Morris Jr 1,2
PMCID: PMC291975  PMID: 5101785

Abstract

In two patients with classic renal tubular acidosis (RTA) and in two patients with RTA associated with the Fanconi syndrome, renal potassium wasting persisted despite sustained correction of acidosis: (a) during moderate degrees of hypokalemia, daily urinary excretion of potassium exceeded 80 mEq in each patient; (b) during more severe degrees of hypokalemia, daily urinary excretion of potassium exceeded 40 mEq in two patients and 100 mEq in another. These urinary excretion rates of potassium are more than twice those observed in potassium-depleted normal subjects with even minimal degrees of hypokalemia. The persistence of renal potassium wasting may have resulted in part from hyperaldosteronism, since urinary aldosterone was frankly increased in two patients and was probably abnormally high in the others relative to the degree of their potassium depletion. The hyperaldosteronism persisted despite sustained correction of acidosis, a normal sodium intake, and no reduction in measured plasma volume, and was not associated with hypertension; its cause was not defined. In the two patients with classic RTA, neither renal potassium wasting nor hyperaldosteronism could be explained as a consequence of a gradient restriction on renal H+ - Na+ exchange because the urinary pH remained greater than, or approximately equal to, the normal arterial pH or considerably greater than the minimal urinary pH attained during acidosis. The findings provide no support for the traditional view that renal potassium wasting in either classic RTA or RTA associated with the Fanconi syndrome is predictably corrected solely by sustained correction of acidosis with alkali therapy.

Full text

PDF
667

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler S. An extrarenal action of aldosterone on mammalian skeletal muscle. Am J Physiol. 1970 Mar;218(3):616–621. doi: 10.1152/ajplegacy.1970.218.3.616. [DOI] [PubMed] [Google Scholar]
  2. Antoine B., Patte D. Etudes sur les déficits chroniques de potassium chez l'homme. I. Influence des variations rapides de la kaliémie sur le débit urinaire du potassium. Rev Fr Etud Clin Biol. 1969 Dec;14(10):984–994. [PubMed] [Google Scholar]
  3. BLACK D. A. K., MILNE M. D. Experimental potassium depletion in man. Clin Sci. 1952 Nov;11(4):397–415. [PubMed] [Google Scholar]
  4. BLAHD W. H., BASSETT S. H. Potassium deficiency in man. Metabolism. 1953 May;2(3):218–224. [PubMed] [Google Scholar]
  5. BROOKS R. V., McSWINEY R. R., PRUNTY F. T., WOOD F. J. Potassium deficiency of renal and adrenal origin. Am J Med. 1957 Sep;23(3):391–407. doi: 10.1016/0002-9343(57)90319-4. [DOI] [PubMed] [Google Scholar]
  6. Biglieri E. G., Slaton P. E., Jr, Kronfield S. J., Deck J. B. Primary aldosteronism with unusual secretory pattern. J Clin Endocrinol Metab. 1967 May;27(5):715–721. doi: 10.1210/jcem-27-5-715. [DOI] [PubMed] [Google Scholar]
  7. CLAPP J. R., RECTOR F. C., Jr, SELDIN D. W. Effect of unreabsorbed anions on proximal and distal transtubular potentials in rats. Am J Physiol. 1962 Apr;202:781–786. doi: 10.1152/ajplegacy.1962.202.4.781. [DOI] [PubMed] [Google Scholar]
  8. CONN J. W., FAJANS S. S., LOUIS L. H., STREETEN D. H., JOHNSON R. D. Intermittent aldosteronism in periodic paralysis; dependence of attacks on retention of sodium, and failure to induce attacks by restriction of dietary sodium. Lancet. 1957 Apr 20;272(6973):802–805. doi: 10.1016/s0140-6736(57)90970-4. [DOI] [PubMed] [Google Scholar]
  9. Cannon P. J., Ames R. P., Laragh J. H. Relation between potassium balance and aldosterone secretion in normal subjects and in patients with hypertensive or renal tubular disease. J Clin Invest. 1966 Jun;45(6):865–879. doi: 10.1172/JCI105402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Danowski T. S., Elkinton J. R., Burrows B. A., Winkler A. W. EXCHANGES OF SODIUM AND POTASSIUM IN FAMILIAL PERIODIC PARALYSIS. J Clin Invest. 1948 Jan;27(1):65–73. doi: 10.1172/JCI101925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. EVANS B. M., JONES N. C. H., MILNE M. D., STEINER S. Electrolyte excretion during experimental potassium depletion in man. Clin Sci. 1954 May;13(2):305–316. [PubMed] [Google Scholar]
  12. FERRIS T. F., LEVITIN H., PHILLIPS E. T., EPSTEIN F. H. Renal potassium-wasting induced by vitamin D. J Clin Invest. 1962 Jun;41:1222–1229. doi: 10.1172/JCI104583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. FERRIS T., KASHGARIAN M., LEVITIN H., BRANDT I., EPSTEIN F. H. Renal tubular acidosis and renal potassium wasting acquired as a result of hypercalcemic nephropathy. N Engl J Med. 1961 Nov 9;265:924–928. doi: 10.1056/NEJM196111092651902. [DOI] [PubMed] [Google Scholar]
  14. FOURMAN P., McCANCE R. A. Tetany complicating the treatment of potassium deficiency in renal acidosis. Lancet. 1955 Feb 12;268(6859):329–331. doi: 10.1016/s0140-6736(55)90063-5. [DOI] [PubMed] [Google Scholar]
  15. FOURMAN P. The ability of the normal kidney to conserve potassium. Lancet. 1952 May 24;1(6717):1042–1044. doi: 10.1016/s0140-6736(52)90694-6. [DOI] [PubMed] [Google Scholar]
  16. GANN D. S., DELEA C. S., GILL J. R., Jr, THOMAS J. P., BARTTER F. C. CONTROL OF ALDOSTERONE SECRETION BY CHANGE OF BODY POTASSIUM IN NORMAL MAN. Am J Physiol. 1964 Jul;207:104–108. doi: 10.1152/ajplegacy.1964.207.1.104. [DOI] [PubMed] [Google Scholar]
  17. Gerstein A. R., Franklin S. S., Kleeman C. R., Maxwell M. H., Gold E. M. Potassium losing pyelonephritis. Response to spironolactone. Arch Intern Med. 1969 Jan;123(1):55–57. [PubMed] [Google Scholar]
  18. Gill J. R., Jr, Bell N. H., Bartter F. C. Impaired conservation of sodium and potassium in renal tubular acidosis and its correction by buffer anions. Clin Sci. 1967 Dec;33(3):577–592. [PubMed] [Google Scholar]
  19. HUTH E. J., SQUIRES R. D., ELKINTON J. R. Experimental potassium depletion in normal human subjects. II. Renal and hormonal factors in the development of extracellular alkalosis during depletion. J Clin Invest. 1959 Jul;38(7):1149–1165. doi: 10.1172/JCI103891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lauler D. P. Preoperative diagnosis of primary aldosteronism. Am J Med. 1966 Dec;41(6):855–863. doi: 10.1016/0002-9343(66)90045-3. [DOI] [PubMed] [Google Scholar]
  21. MAHLER R. F., STANBURY S. W. Potassium-losing renal disease; renal and metabolic observations on a patient sustaining renal wastage of potassium. Q J Med. 1956 Jan;25(97):21–52. [PubMed] [Google Scholar]
  22. MALNIC G., KLOSE R. M., GIEBISCH G. MICROPUNCTURE STUDY OF RENAL POTASSIUM EXCRETION IN THE RAT. Am J Physiol. 1964 Apr;206:674–686. doi: 10.1152/ajplegacy.1964.206.4.674. [DOI] [PubMed] [Google Scholar]
  23. MILNE M. D., STANBURY S. W., THOMSON A. E. Observations on the Fanconi syndrome and renal hyperchloraemic acidosis in the adult. Q J Med. 1952 Jan;21(81):61–82. [PubMed] [Google Scholar]
  24. Malnic G., Klose R. M., Giebisch G. Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Am J Physiol. 1966 Sep;211(3):529–547. doi: 10.1152/ajplegacy.1966.211.3.529. [DOI] [PubMed] [Google Scholar]
  25. Morris R. C., Jr An experimental renal acidification defect in patients with hereditary fructose intolerance. I. Its resemblance to renal tubular acidosis. J Clin Invest. 1968 Jun;47(6):1389–1398. doi: 10.1172/JCI105830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morris R. C., Jr An experimental renal acidification defect in patients with hereditary fructose intolerance. II. Its distinction from classic renal tubular acidosis; its resemblance to the renal acidification defect associated with the Fanconi syndrome of children with cystinosis. J Clin Invest. 1968 Jul;47(7):1648–1663. doi: 10.1172/JCI105856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Morris R. C., Jr Renal tubular acidosis. Mechanisms, classification and implications. N Engl J Med. 1969 Dec 18;281(25):1405–1413. doi: 10.1056/NEJM196912182812508. [DOI] [PubMed] [Google Scholar]
  28. PINES K. L., MUDGE G. H. Renal tubular acidosis with osteomalacia; report of 3 cases. Am J Med. 1951 Sep;11(3):302–311. doi: 10.1016/0002-9343(51)90167-2. [DOI] [PubMed] [Google Scholar]
  29. RELMAN A. S. RENAL ACIDOSIS AND RENAL EXCRETION OF ACID IN HEALTH AND DISEASE. Adv Intern Med. 1964;12:295–347. [PubMed] [Google Scholar]
  30. REYNOLDS T. B. Observations on the pathogenesis of renal tubular acidosis. Am J Med. 1958 Oct;25(4):503–515. doi: 10.1016/0002-9343(58)90040-8. [DOI] [PubMed] [Google Scholar]
  31. Rodriguez-Soriano J., Edelmann C. M., Jr Renal tubular acidosis. Annu Rev Med. 1969;20:363–382. doi: 10.1146/annurev.me.20.020169.002051. [DOI] [PubMed] [Google Scholar]
  32. Rosin J. M., Katz M. A., Rector F. C., Jr, Seldin D. W. Acetazolamide in studying sodium reabsorption in diluting segment. Am J Physiol. 1970 Dec;219(6):1731–1738. doi: 10.1152/ajplegacy.1970.219.6.1731. [DOI] [PubMed] [Google Scholar]
  33. SIEGEL R. R., LOTSPEICH W. D. POTASSIUM AND SODIUM EXCRETION AND POTASSIUM HOMEOSTASIS DURING ACUTE HYPOKALEMIA. Am J Physiol. 1965 Jun;208:1143–1152. doi: 10.1152/ajplegacy.1965.208.6.1143. [DOI] [PubMed] [Google Scholar]
  34. SIROTA J. H., HAMERMAN D. Renal function studies in a adult subject with the Fanconi syndrome. Am J Med. 1954 Jan;16(1):138–152. doi: 10.1016/0002-9343(54)90329-0. [DOI] [PubMed] [Google Scholar]
  35. SQUIRES R. D., HUTH E. J. Experimental potassium depletion in normal human subjects. I. Relation of ionic intakes to the renal conservation of potassium. J Clin Invest. 1959 Jul;38(7):1134–1148. doi: 10.1172/JCI103890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sebastian A., McSherry E., Morris R. C., Jr On the mechanism of renal potassium wasting in renal tubular acidosis associated with the Fanconi syndrome (type 2 RTA). J Clin Invest. 1971 Jan;50(1):231–243. doi: 10.1172/JCI106479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Thurau K. Influence of sodium concentration at macula densa cells on tubular sodium load. Ann N Y Acad Sci. 1966 Nov 22;139(2):388–399. doi: 10.1111/j.1749-6632.1966.tb41212.x. [DOI] [PubMed] [Google Scholar]
  38. WOMERSLEY R. A., DARRAGH J. H. Potassium and sodium restriction in the normal human. J Clin Invest. 1955 Mar;34(3):456–461. doi: 10.1172/JCI103094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. WORTHEN H. G., GOOD R. A. The de Toni-Fanconi syndrome with cystinosis; clinical and metabolic study of two cases in a family and a critical review on the nature of the syndrome. AMA J Dis Child. 1958 Jun;95(6):653–688. [PubMed] [Google Scholar]
  40. WRONG O., DAVIES H. E. The excretion of acid in renal disease. Q J Med. 1959 Apr;28(110):259–313. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES