Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1971 Apr;50(4):779–795. doi: 10.1172/JCI106549

Postnatal development of renal function: micropuncture and clearance studies in the dog

Michael Horster 1, Heinz Valtin 1
PMCID: PMC291992  PMID: 5547275

Abstract

Postnatal renal development was studied in dogs between 2 and 77 days. Single, superficial nephrons were evaluated by micropuncture, concurrently with measurements of total renal function and morphometric analyses in the same animals.

Glomerular filtration rate for the entire kidney increased linearly from 0.13 ml/min per g kidney weight at 2 days to 0.91 at 77 days. Extraction of p-aminohippurate increased from about 20 to 80%, and renal plasma flow per g kidney weight, measured as Cpah/Epah, increased threefold during the same period. Filtration fraction increased to the mature value during the first half of the postnatal period studied.

The clearance of urea per unit of renal mass increased with age, whereas the fraction of filtered urea reabsorbed declined during the early part of the postnatal period. The pattern of fractional urea reabsorption may be due mainly to increased medullary recycling of urea and to a rise in the reabsorption of water from the medullary collecting duct.

Urine osmolality was higher than plasma from birth onward and rose with age. Osmolal equality of collecting duct fluid and medullary interstitium reflected mature vasopressin (ADH)-induced water permeability. The rise in urinary concentration was predominantly due to increasing medullary sequestration of urea.

Glomerular filtration rate of the superficial nephron increased from 3.2 nl/min at 21 days, when subcapsular nephrons were uniformly patent, to 23.1 at 77 days. Despite this rise in filtered load, fractional reabsorption of sodium and water in superficial proximal tubules was constant and at the mature level from the onset of intratubular perfusion. Changes in arterial plasma protein concentration, in filtration fraction, and in the hydrostatic pressure gradient between proximal tubule and peritubular capillary may interact to maintain glomerulotubular balance.

The data, together with results of an accompanying morphological study, demonstrate a sequence of coordinated changes during postnatal renal maturation.

Full text

PDF
779

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEALE R. N., CROFT D. A sensitive method for the colorimetric determination of urea. J Clin Pathol. 1961 Jul;14:418–424. doi: 10.1136/jcp.14.4.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brenner B. M., Falchuk K. H., Keimowitz R. I., Berliner R. W. The relationship between peritubular capillary protein concentration and fluid reabsorption by the renal proximal tubule. J Clin Invest. 1969 Aug;48(8):1519–1531. doi: 10.1172/JCI106118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CALCAGNO P. L., RUBIN M. I. RENAL EXTRACTION OF PARA-AMINOHIPPURATE IN INFANTS AND CHILDREN. J Clin Invest. 1963 Oct;42:1632–1639. doi: 10.1172/JCI104848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clark G. A., Holling H. E. The protein content and osmotic pressure in serum of young animals. J Physiol. 1931 Nov 14;73(3):305–310. doi: 10.1113/jphysiol.1931.sp002812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. EDELMANN C. M., BARNETT H. L., TROUPKOU V. Renal concentrating mechanisms in newborn infants. Effect of dietary protein and water content, role of urea, and responsiveness to antidiuretic hormone. J Clin Invest. 1960 Jul;39:1062–1069. doi: 10.1172/JCI104121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FETTERMAN G. H., SHUPLOCK N. A., PHILIPP F. J., GREGG H. S. THE GROWTH AND MATURATION OF HUMAN GLOMERULI AND PROXIMAL CONVOLUTIONS FROM TERM TO ADULTHOOD: STUDIES BY MICRODISSECTION. Pediatrics. 1965 Apr;35:601–619. [PubMed] [Google Scholar]
  7. FUHR J., KACZMARCZYK J., KRUTTGEN C. D. Eine einfache colorimetrische Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin Wochenschr. 1955 Aug 1;33(29-30):729–730. doi: 10.1007/BF01473295. [DOI] [PubMed] [Google Scholar]
  8. GOTTSCHALK C. W., MYLLE M. Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Am J Physiol. 1956 May;185(2):430–439. doi: 10.1152/ajplegacy.1956.185.2.430. [DOI] [PubMed] [Google Scholar]
  9. Gertz K. H., Mangos J. A., Braun G., Pagel H. D. Pressure in the glomerular capillaries of the rat kidney and its relation to arterial blood pressure. Pflugers Arch Gesamte Physiol Menschen Tiere. 1966;288(4):369–374. doi: 10.1007/BF00362581. [DOI] [PubMed] [Google Scholar]
  10. HILGER H. H., KLUMPER J. D., ULLRICH K. J. Wasserrückresorption und Ionentransport durch die Sammelrohrzellen der Säugetierniere; mikroanalytische Untersuchungen. Pflugers Arch. 1958;267(3):218–237. doi: 10.1007/BF00362426. [DOI] [PubMed] [Google Scholar]
  11. Heller H. The renal function of newborn infants. J Physiol. 1944 Apr 4;102(4):429–440. doi: 10.1113/jphysiol.1944.sp004048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horster M., Kemler B. J., Valtin H. Intracortical distribution of number and volume of glomeruli during postnatal maturation in the dog. J Clin Invest. 1971 Apr;50(4):796–800. doi: 10.1172/JCI106550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horster M., Lewy J. E. Filtration fraction and extraction of PAH during neonatal period in the rat. Am J Physiol. 1970 Oct;219(4):1061–1065. doi: 10.1152/ajplegacy.1970.219.4.1061. [DOI] [PubMed] [Google Scholar]
  14. Horster M., Thurau K. Micropuncture studies on the filtration rate of single superficial and juxtamedullary glomeruli in the rat kidney. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;301(2):162–181. doi: 10.1007/BF00362733. [DOI] [PubMed] [Google Scholar]
  15. Kettyle W. M., Horster M., Thurau K., Valtin H. Cryoscopic determination of renal tissue osmolality by an ultramicro method. Pflugers Arch. 1970;321(1):83–89. doi: 10.1007/BF00594124. [DOI] [PubMed] [Google Scholar]
  16. Lewy J. E., Windhager E. E. Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am J Physiol. 1968 May;214(5):943–954. doi: 10.1152/ajplegacy.1968.214.5.943. [DOI] [PubMed] [Google Scholar]
  17. Liebau G., Levine D. Z., Thurau K. Micropuncture studies on the dog kidney. I. The response of the proximal tubule to changes in systemic blood pressure within and below the autoregulatory range. Pflugers Arch. 1968;304(1):57–68. doi: 10.1007/BF00586718. [DOI] [PubMed] [Google Scholar]
  18. Morel F., de Rouffignac C., Marsh D., Guinnebault M., Lechene C. Etude par microponction de l'élaboration de l'urine. II. Chez le psammomys non diurétique. Nephron. 1969;6(5):553–570. doi: 10.1159/000179755. [DOI] [PubMed] [Google Scholar]
  19. Morgan T., Berliner R. W. Permeability of the loop of Henle, vasa recta, and collecting duct to water, urea, and sodium. Am J Physiol. 1968 Jul;215(1):108–115. doi: 10.1152/ajplegacy.1968.215.1.108. [DOI] [PubMed] [Google Scholar]
  20. Munkácsi I., Palkovits M. Volumetric analysis of glomerular size in kidneys of mammals living in desert, semidesert or water-rich environment in the Sudan. Circ Res. 1965 Oct;17(4):303–311. doi: 10.1161/01.res.17.4.303. [DOI] [PubMed] [Google Scholar]
  21. Osathanondh V., Potter E. L. Development of human kidney as shown by microdissection. IV. Development of tubular portions of nephrons. Arch Pathol. 1966 Nov;82(5):391–402. [PubMed] [Google Scholar]
  22. RENNICK B., HAMILTON B., EVANS R. Development of renal tubular transports of TEA and PAH in the puppy and piglet. Am J Physiol. 1961 Oct;201:743–746. doi: 10.1152/ajplegacy.1961.201.4.743. [DOI] [PubMed] [Google Scholar]
  23. Rubin M. I., Bruck E., Rapoport M., Snively M., McKay H., Baumler A. MATURATION OF RENAL FUNCTION IN CHILDHOOD: CLEARANCE STUDIES. J Clin Invest. 1949 Sep;28(5 Pt 2):1144–1162. doi: 10.1172/JCI102149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schnermann J., Horster M., Levine D. Z. The influence of sampling technique on the micropuncture determination of GFR and reabsorptive characteristics of single rat proximal tubules. Pflugers Arch. 1969;309(1):48–58. doi: 10.1007/BF00592281. [DOI] [PubMed] [Google Scholar]
  25. Smith H. W., Finkelstein N., Aliminosa L., Crawford B., Graber M. THE RENAL CLEARANCES OF SUBSTITUTED HIPPURIC ACID DERIVATIVES AND OTHER AROMATIC ACIDS IN DOG AND MAN. J Clin Invest. 1945 May;24(3):388–404. doi: 10.1172/JCI101618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Watson J. F. Effect of saline loading on sodium reabsorption in the dog proximal tubule. Am J Physiol. 1966 Apr;210(4):781–785. doi: 10.1152/ajplegacy.1966.210.4.781. [DOI] [PubMed] [Google Scholar]
  27. Wright F. S., Howards S. S., Knox F. G., Berliner R. W. Measurement of sodium reabsorption by proximal tubule of the dog. Am J Physiol. 1969 Jul;217(1):199–206. doi: 10.1152/ajplegacy.1969.217.1.199. [DOI] [PubMed] [Google Scholar]
  28. Yunibhand P., Held U. Nierenmark und Urinosmolalität nach der Geburt bei der Ratte unter Flüssigkeitsentzug. Helv Physiol Pharmacol Acta. 1965;23(2):91–96. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES