Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1971 Jul;50(7):1373–1378. doi: 10.1172/JCI106619

Red cell aging in vivo

A M Ganzoni 1,2, R Oakes 1,2, R S Hillman 1,2
PMCID: PMC292074  PMID: 5090053

Abstract

Previous studies of red cell structure and metabolism during the aging process have relied upon in vitro techniques of cell separation into various age populations. Probably the most common approach is to isolate the older red cells with the assumption that they are more dense. This may lead to a number of inconsistencies in observations, and may certainly raise questions about possible cell changes secondary to manipulative procedures. For this reason, an experimental system was devised where a normal red cell population could be studied, while aging, in an in vivo environment. The initial red cell mass of a large number of inbred rats was transferred repeatedly into an ever smaller number of animals, making it possible to follow an aging population of red cells up to 48 days while preventing contamination with newly produced cells by suppression of erythropoiesis with transfusion-induced polycythemia. During this period, samples of progressively older red cells could be obtained for measurements of red cell constant. It was noted that the normal rat red cell undergoes both volume reduction and significant hemoglobin content loss with aging. In addition, the hemoglobin concentration within the cell demonstrated an early rise after a return to nearly normal values. These findings are noteworthy in that they help to explain the characteristics of life-spans of cohort labeled red cell populations in small animals, and provide a possible example of a cell's remodeling process within the spleen.

Full text

PDF
1373

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLISON A. C., BURN G. P. Enzyme activity as a function of age in the human erythrocyte. Br J Haematol. 1955 Jul;1(3):291–303. doi: 10.1111/j.1365-2141.1955.tb05511.x. [DOI] [PubMed] [Google Scholar]
  2. BELCHER E. H., HARRISS E. B. Studies of red cell life span in the rat. J Physiol. 1959 May 19;146(2):217–234. doi: 10.1113/jphysiol.1959.sp006190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BERLIN N. I., WALDMANN T. A., WEISSMAN S. M. Life span of red blood cell. Physiol Rev. 1959 Jul;39(3):577–616. doi: 10.1152/physrev.1959.39.3.577. [DOI] [PubMed] [Google Scholar]
  4. BRECHER G., JAKOBEK E. F., SCHNEIDERMAN M. A., WILLIAMS G. Z., SCHMIDT P. J. Size distribution of erythrocytes. Ann N Y Acad Sci. 1962 Jun 29;99:242–261. doi: 10.1111/j.1749-6632.1962.tb45310.x. [DOI] [PubMed] [Google Scholar]
  5. Bishop C., Prentice T. C. Separation of rabbit red cells by density in a bovine serum albumin gradient and correlation of red cell density with cell age after in vivo labeling with 59-Fe. J Cell Physiol. 1966 Feb;67(1):197–207. doi: 10.1002/jcp.1040670122. [DOI] [PubMed] [Google Scholar]
  6. CHALFIN D. Differences between young and mature rabbit erythrocytes. J Cell Physiol. 1956 Apr;47(2):215–243. doi: 10.1002/jcp.1030470204. [DOI] [PubMed] [Google Scholar]
  7. Chapman R. G., Schaumburg L. Glycolysis and glycolytic enzyme activity of aging red cells in man. Changes in hexokinase, aldolase, glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and glutamic-oxalacetic transaminase. Br J Haematol. 1967 Sep;13(5):665–678. doi: 10.1111/j.1365-2141.1967.tb08832.x. [DOI] [PubMed] [Google Scholar]
  8. Coopersmith A., Ingram M. Red cell volumes and erythropoiesis. I. Age:density:volume relationship of normocytes. Am J Physiol. 1968 Nov;215(5):1276–1283. doi: 10.1152/ajplegacy.1968.215.5.1276. [DOI] [PubMed] [Google Scholar]
  9. DANON D., MARIKOVSKY V. DETERMINATION OF DENSITY DISTRIBUTION OF RED CELL POPULATION. J Lab Clin Med. 1964 Oct;64:668–674. [PubMed] [Google Scholar]
  10. GARBY L., HJELM M. ULTRACENTRIFUGAL FRACTIONATION OF HUMAN ERYTHROCYTES WITH RESPECT TO CELL AGE. Blut. 1963 Aug;9:284–291. doi: 10.1007/BF01678992. [DOI] [PubMed] [Google Scholar]
  11. Ganzoni A., Hillman R. S., Finch C. A. Maturation of the macroreticulocyte. Br J Haematol. 1969 Jan-Feb;16(1):119–135. doi: 10.1111/j.1365-2141.1969.tb00384.x. [DOI] [PubMed] [Google Scholar]
  12. LEIF R. C., VINOGRAD J. THE DISTRIBUTION OF BUOYANT DENSITY OF HUMAN ERYTHROCYTES IN BOVINE ALBUMIN SOLUTIONS. Proc Natl Acad Sci U S A. 1964 Mar;51:520–528. doi: 10.1073/pnas.51.3.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOEHR G. W., WALLER H. D. [On the biochemistry of erythrocyte aging]. Folia Haematol Int Mag Klin Morphol Blutforsch. 1961;78:385–402. [PubMed] [Google Scholar]
  14. MARKS P. A., JOHNSON A. B. Relationship between the age of human erythrocytes and their osmotic resistance: a basis for separating young and old erythrocytes. J Clin Invest. 1958 Nov;37(11):1542–1548. doi: 10.1172/JCI103746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. O'CONNELL D. J., CARUSO C. J., SASS M. D. SEPARATION OF ERYTHROCYTES OF DIFFERENT AGES. Clin Chem. 1965 Aug;11:771–781. [PubMed] [Google Scholar]
  16. PRANKERD T. A. The ageing of red cells. J Physiol. 1958 Sep 23;143(2):325–331. doi: 10.1113/jphysiol.1958.sp006062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Piomelli S., Lurinsky G., Wasserman L. R. The mechanism of red cell aging. I. Relationship between cell age and specific gravity evaluated by ultracentrifugation in a discontinuous density gradient. J Lab Clin Med. 1967 Apr;69(4):659–674. [PubMed] [Google Scholar]
  18. Reissmann K. R., Ito K. Selective eradication of erythropoiesis by actinomycin D as the result of interference with hormonally controlled effector pathway of cell differentiation. Blood. 1966 Aug;28(2):201–212. [PubMed] [Google Scholar]
  19. Robinson S. H., Tsong M. Hemolysis of "stress" reticulocytes: a source of erythropoietic bilirubin formation. J Clin Invest. 1970 May;49(5):1025–1034. doi: 10.1172/JCI106302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shank B. B., Adams R. B., Steidley K. D., Murphy J. R. A physical explantation of the bimodal distribution obtained by electronic sizing of erythrocytes. J Lab Clin Med. 1969 Oct;74(4):630–641. [PubMed] [Google Scholar]
  21. Van Dilla M. A., Spalding J. F. Erythrocyte volume distribution during recovery from bone marrow arrest. Nature. 1967 Feb 18;213(5077):708–709. doi: 10.1038/213708a0. [DOI] [PubMed] [Google Scholar]
  22. Weed R. I., Reed C. F. Membrane alterations leading to red cell destruction. Am J Med. 1966 Nov;41(5):681–698. doi: 10.1016/0002-9343(66)90030-1. [DOI] [PubMed] [Google Scholar]
  23. Weiss L., Tavassoli M. Anatomical hazards to the passage of erythrocytes through the spleen. Semin Hematol. 1970 Oct;7(4):372–380. [PubMed] [Google Scholar]
  24. Winter H., Sheard R. P. The skewness of volume distribution curves of erythrocytes. Aust J Exp Biol Med Sci. 1965 Dec;43(6):687–698. doi: 10.1038/icb.1965.54. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES