Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1971 Jul;50(7):1536–1545. doi: 10.1172/JCI106639

Human forearm metabolism during progressive starvation

O E Owen 1, George A Reichard Jr 1
PMCID: PMC292094  PMID: 5090067

Abstract

Forearm muscle metabolism was studied in eight obese subjects after an overnight, 3 and 24 day fast. Arterio-deep-venous differences of oxygen, carbon dioxide, glucose, lactate, pyruvate, free fatty acids, acetoacetate, and β-hydroxybutyrate with simultaneous forearm blood flow were measured. Rates of metabolite utilization and production were thus estimated. Oxygen consumption and lactate and pyruvate production remained relatively constant at each fasting period. Glucose, initially the major substrate consumed, showed decreased consumption after 3 and 24 days of fasting. Acetoacetate and β-hydroxybutyrate consumption after an overnight fast was low. At 3 days of fasting with increased arterial concentrations of acetoactate and β-hydroxybutyrate, consumption of these substrates rose dramatically. At 24 days of fasting, despite further elevation of arterial levels of acetoacetate and β-hydroxybutyrate, the utilization of acetoacetate did not increase further and if anything decreased, while five out of eight subjects released β-hydroxybutyrate across the forearm. Acetoacetate was preferentially extracted over β-hydroxybutyrate. At 24 days of starvation, free fatty acids were the principal fuels extracted by forearm muscle; at this time there was a decreased glucose and also ketone-body consumption by skeletal muscle.

Full text

PDF
1536

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDRES R., CADER G., ZIERLER K. L. The quantitatively minor role of carbohydrate in oxidative metabolism by skeletal muscle in intact man in the basal state; measurements of oxygen and glucose uptake and carbon dioxide and lactate production in the forearm. J Clin Invest. 1956 Jun;35(6):671–682. doi: 10.1172/JCI103324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. ANDRES R., ZIERLER K. L., ANDERSON H. M., STAINSBY W. N., CADER G., GHRAYYIB A. S., LILIENTHAL J. L., Jr Measurement of blood flow and volume in the forearm of man; with notes on the theory of indicator-dilution and on production of turbulence, hemolysis, and vasodilatation by intra-vascular injection. J Clin Invest. 1954 Apr;33(4):482–504. doi: 10.1172/JCI102919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BALTZAN M. A., ANDRES R., CADER G., ZIERLER K. L. Heterogeneity of forearm metabolism with special reference to free fatty acids. J Clin Invest. 1962 Jan;41:116–125. doi: 10.1172/JCI104453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BASSENGE E., WENDT V. E., SCHOLLMEYER P., BLUEMCHEN G., GUDBJARNASON S., BING R. J. EFFECT OF KETONE BODIES ON CARDIAC METABOLISM. Am J Physiol. 1965 Jan;208:162–168. doi: 10.1152/ajplegacy.1965.208.1.162. [DOI] [PubMed] [Google Scholar]
  5. BUTTERFIELD W. J., HOLLING H. E. Peripheral glucose metabolism in fasting control subjects and diabetic patients. Clin Sci. 1959 May;18:147–174. [PubMed] [Google Scholar]
  6. Basso L. V., Havel R. J. Hepatic metabolism of free fatty acids in normal and diabetic dogs. J Clin Invest. 1970 Mar;49(3):537–547. doi: 10.1172/JCI106264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. COOPER K. E., EDHOLM O. G., MOTTRAM R. F. The blood flow in skin and muscle of the human forearm. J Physiol. 1955 May 27;128(2):258–267. doi: 10.1113/jphysiol.1955.sp005304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cahill G. F., Jr, Herrera M. G., Morgan A. P., Soeldner J. S., Steinke J., Levy P. L., Reichard G. A., Jr, Kipnis D. M. Hormone-fuel interrelationships during fasting. J Clin Invest. 1966 Nov;45(11):1751–1769. doi: 10.1172/JCI105481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cahill G. J., Jr, Owen O. E., Morgan A. P. The consumption of fuels during prolonged starvation. Adv Enzyme Regul. 1968;6:143–150. doi: 10.1016/0065-2571(68)90011-3. [DOI] [PubMed] [Google Scholar]
  10. Christensen N. J., Orskov H. The relationship between endogenous serum insulin concentration and glucose uptake in the forearm muscles of nondiabetics. J Clin Invest. 1968 Jun;47(6):1262–1268. doi: 10.1172/JCI105818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DOLE V. P., MEINERTZ H. Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem. 1960 Sep;235:2595–2599. [PubMed] [Google Scholar]
  12. DRENICK E. J., SWENDSEID M. E., BLAHD W. H., TUTTLE S. G. PROLONGED STARVATION AS TREATMENT FOR SEVERE OBESITY. JAMA. 1964 Jan 11;187:100–105. doi: 10.1001/jama.1964.03060150024006. [DOI] [PubMed] [Google Scholar]
  13. Felig P., Pozefsky T., Marliss E., Cahill G. F., Jr Alanine: key role in gluconeogenesis. Science. 1970 Feb 13;167(3920):1003–1004. doi: 10.1126/science.167.3920.1003. [DOI] [PubMed] [Google Scholar]
  14. GAMMELTOFT A. The ratio beta-hydroxybutyric acid-acetoacetic acid in the blood under various experimental conditions. Acta Physiol Scand. 1951 Oct 9;24(1):35–48. doi: 10.1111/j.1748-1716.1951.tb00825.x. [DOI] [PubMed] [Google Scholar]
  15. Green D. E., Dewan J. G., Leloir L. F. The beta-hydroxybutyric dehydrogenase of animal tissues. Biochem J. 1937 Jun;31(6):934–949. doi: 10.1042/bj0310934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HILL J. B., KESSLER G. An automated determination of glucose utilizing a glucose oxidase-peroxidase system. J Lab Clin Med. 1961 Jun;57:970–980. [PubMed] [Google Scholar]
  17. Hagenfeldt L., Wahren J. Human forearm muscle metabolism during exercise. 3. Uptake, release and oxidation of beta-hydroxybutyrate and observations on the beta-hydroxybutyrate/acetoacetate ratio. Scand J Clin Lab Invest. 1968;21(4):314–320. doi: 10.3109/00365516809076999. [DOI] [PubMed] [Google Scholar]
  18. Hagenfeldt L., Wahren J. Human forearm muscle metabolism during exercise. II. Uptake, release and oxidation of individual FFA and glycerol. Scand J Clin Lab Invest. 1968;21(3):263–276. doi: 10.3109/00365516809076994. [DOI] [PubMed] [Google Scholar]
  19. Kety S. S., Polis B. D., Nadler C. S., Schmidt C. F. THE BLOOD FLOW AND OXYGEN CONSUMPTION OF THE HUMAN BRAIN IN DIABETIC ACIDOSIS AND COMA. J Clin Invest. 1948 Jul;27(4):500–510. doi: 10.1172/JCI101997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LOCHHEAD H. B., PURCELL M. K. Some recent changes in blood gas methods applied to the Van Slyke volumetric apparatus. Am J Clin Pathol. 1951 Feb;21(2):177–188. doi: 10.1093/ajcp/21.2_ts.177. [DOI] [PubMed] [Google Scholar]
  21. MOTTRAM R. F. The oxygen consumption of human skeletal muscle in vivo. J Physiol. 1955 May 27;128(2):268–276. doi: 10.1113/jphysiol.1955.sp005305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Oliva P. B. Lactic acidosis. Am J Med. 1970 Feb;48(2):209–225. doi: 10.1016/0002-9343(70)90117-8. [DOI] [PubMed] [Google Scholar]
  23. Owen O. E., Felig P., Morgan A. P., Wahren J., Cahill G. F., Jr Liver and kidney metabolism during prolonged starvation. J Clin Invest. 1969 Mar;48(3):574–583. doi: 10.1172/JCI106016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Owen O. E., Morgan A. P., Kemp H. G., Sullivan J. M., Herrera M. G., Cahill G. F., Jr Brain metabolism during fasting. J Clin Invest. 1967 Oct;46(10):1589–1595. doi: 10.1172/JCI105650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pozefsky T., Felig P., Tobin J. D., Soeldner J. S., Cahill G. F., Jr Amino acid balance across tissues of the forearm in postabsorptive man. Effects of insulin at two dose levels. J Clin Invest. 1969 Dec;48(12):2273–2282. doi: 10.1172/JCI106193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. RABINOWITZ D., ZIERLER K. L. Forearm metabolism in obesity and its response to intra-arterial insulin. Characterization of insulin resistance and evidence for adaptive hyperinsulinism. J Clin Invest. 1962 Dec;41:2173–2181. doi: 10.1172/JCI104676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. RABINOWITZ D., ZIERLER K. L. Role of free fatty acids in forearm metabolism in man, quantitated by use of insulin. J Clin Invest. 1962 Dec;41:2191–2197. doi: 10.1172/JCI104678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. RANDLE P. J., GARLAND P. B., HALES C. N., NEWSHOLME E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963 Apr 13;1(7285):785–789. doi: 10.1016/s0140-6736(63)91500-9. [DOI] [PubMed] [Google Scholar]
  29. Randle P. J., Garland P. B., Hales C. N., Newsholme E. A., Denton R. M., Pogson C. I. Interactions of metabolism and the physiological role of insulin. Recent Prog Horm Res. 1966;22:1–48. doi: 10.1016/b978-1-4831-9825-5.50004-x. [DOI] [PubMed] [Google Scholar]
  30. Reidenberg M. M., Haag B. L., Channick B. J., Shuman C. R., Wilson T. G. The response of bone to metabolic acidosis in man. Metabolism. 1966 Mar;15(3):236–241. doi: 10.1016/0026-0495(66)90021-7. [DOI] [PubMed] [Google Scholar]
  31. SHIPP J. C. INTERRELATION BETWEEN CARBOHYDRATE AND FATTY ACID METABOLISM OF ISOLATED PERFUSED RAT HEART. Metabolism. 1964 Sep;13:852–867. doi: 10.1016/0026-0495(64)90054-x. [DOI] [PubMed] [Google Scholar]
  32. Schonfeld G., Kipnis D. M. Glucose-fatty acid interactions in the rat diaphragm in vivo. Diabetes. 1968 Jul;17(7):422–426. doi: 10.2337/diab.17.7.422. [DOI] [PubMed] [Google Scholar]
  33. Soeldner J. S., Slone D. Critical variables in the radioimmunoassay of serum insulin using the double antibody technic. Diabetes. 1965 Dec;14(12):771–779. doi: 10.2337/diab.14.12.771. [DOI] [PubMed] [Google Scholar]
  34. Steiner A. L., Goodman A. D., Treble D. H. Effect of metabolic acidosis on renal gluconeogenesis in vivo. Am J Physiol. 1968 Jul;215(1):211–217. doi: 10.1152/ajplegacy.1968.215.1.211. [DOI] [PubMed] [Google Scholar]
  35. Tranquada R. E., Grant W. J., Peterson C. R. Lactic acidosis. Arch Intern Med. 1966 Feb;117(2):192–202. [PubMed] [Google Scholar]
  36. WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. WILLIAMSON J. R., KREBS H. A. Acetoacetate as fuel of respiration in the perfused rat heart. Biochem J. 1961 Sep;80:540–547. doi: 10.1042/bj0800540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. WILLIAMSON J. R., KREBS H. A. Acetoacetate as fuel of respiration in the perfused rat heart. Biochem J. 1961 Sep;80:540–547. doi: 10.1042/bj0800540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Weidemann M. J., Krebs H. A. The fuel of respiration of rat kidney cortex. Biochem J. 1969 Apr;112(2):149–166. doi: 10.1042/bj1120149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. ZIERLER K. L., RABINOWITZ D. ROLES OF INSULIN AND GROWTH HORMONE, BASED ON STUDIES OF FOREARM METABOLISM IN MAN. Medicine (Baltimore) 1963 Nov;42:385–402. doi: 10.1097/00005792-196311000-00002. [DOI] [PubMed] [Google Scholar]
  41. Zampa G. A., Altilia F., Bracchetti D., Geminiani G. D., Borgatti E., Odifreddi M. T. Studies on peripheral glucose metabolism using the experimental human forearm preparation. Diabetologia. 1967 Mar;3(1):35–46. doi: 10.1007/BF01269909. [DOI] [PubMed] [Google Scholar]
  42. Zierler K. L., Maseri A., Klassen G., Rabinowitz D., Burgess J. Muscle metabolism during exercise in man. Trans Assoc Am Physicians. 1968;81:266–273. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES