Abstract
Human erythrocytes incubated in medium containing 50 mM glucose have increased intracellular sorbitol and fructose concentrations as compared with samples incubated with 5 mM glucose. Increased medium glucose concentration did not significantly alter total glucose consumption or lactate production. However, the intracellular lactate:pyruvate ratio rose, the concentrations of fructose diphosphate, and triose phosphates increased, and the 2,3-diphosphoglycerate concentration fell. [14C]O2 production from glucose-1-14C also increased with increased medium glucose concentration. These changes are believed to reflect changes in the redox states of the diphosphopyridine nucleotide/reduced form of diphosphopyridine nucleotide (NAD/NADH) and nicotinamide—adenine dinucleotide phosphate/reduced form of nicotinamide—adenine dinucleotide phosphate (NADP/NADPH) couples resulting from increased activity of the polyol pathway. Addition of pyruvate to the incubation media prevented these changes. These studies illustrate that an increase in the red cell's normal substrate, glucose, can produce changes in red cell metabolism.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asakura T., Adachi K., Minagami S., Yoshikawa H. Non-glycolytic sugar metabolism in human erythrocytes. I. Xylitol metabolism. J Biochem. 1967 Aug;62(2):184–193. doi: 10.1093/oxfordjournals.jbchem.a128647. [DOI] [PubMed] [Google Scholar]
- Clements R. S., Jr, Morrison A. D., Winegrad A. I. Polyol pathway in aorta: regulation by hormones. Science. 1969 Nov 21;166(3908):1007–1008. doi: 10.1126/science.166.3908.1007. [DOI] [PubMed] [Google Scholar]
- Clements R. S., Jr, Weaver J. P., Winegrad A. I. The distribution of polyol: NADP oxidoreductase in mammalian tissues. Biochem Biophys Res Commun. 1969 Oct 8;37(2):347–353. doi: 10.1016/0006-291x(69)90741-4. [DOI] [PubMed] [Google Scholar]
- FREI S., ROSENBERG T., WILBRANDT W. The kinetics of glucose transport through the human red cell membrane. Exp Cell Res. 1956 Aug;11(1):59–66. doi: 10.1016/0014-4827(56)90190-2. [DOI] [PubMed] [Google Scholar]
- GARBY L., DE VERDIERCH C. H. GLUCOSE METABOLISM IN NORMAL ERYTHROCYTES. I. KINETICS OF THE HEXOKINASE REACTION IN INTACT CELLS. Scand J Haematol. 1964;1:150–167. doi: 10.1111/j.1600-0609.1964.tb00013.x. [DOI] [PubMed] [Google Scholar]
- Gabbay K. H., Merola L. O., Field R. A. Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science. 1966 Jan 14;151(3707):209–210. doi: 10.1126/science.151.3707.209. [DOI] [PubMed] [Google Scholar]
- HAYMAN S., KINOSHITA J. H. ISOLATION AND PROPERTIES OF LENS ALDOSE REDUCTASE. J Biol Chem. 1965 Feb;240:877–882. [PubMed] [Google Scholar]
- HERS H. G. [Aldose reductase]. Biochim Biophys Acta. 1960 Jan 1;37:120–126. doi: 10.1016/0006-3002(60)90085-8. [DOI] [PubMed] [Google Scholar]
- Hadjivassiliou A. G., Rieder S. V. The enzymatic assay of pyruvic and lactic acids. A definitive procedure. Clin Chim Acta. 1968 Mar;19(3):357–361. doi: 10.1016/0009-8981(68)90258-1. [DOI] [PubMed] [Google Scholar]
- KINOSHITA J. H., FUTTERMAN S., SATOH K., MEROLA L. O. FACTORS AFFECTING THE FORMATION OF SUGAR ALCOHOLS IN OCULAR LENS. Biochim Biophys Acta. 1963 Aug 13;74:340–350. doi: 10.1016/0006-3002(63)91377-5. [DOI] [PubMed] [Google Scholar]
- KINOSHITA J. H., MEROLA L. O., DIKMAK E. Osmotic changes in experimental galactose cataracts. Exp Eye Res. 1962 Jun;1:405–410. doi: 10.1016/s0014-4835(62)80030-x. [DOI] [PubMed] [Google Scholar]
- Keitt A. S. Hemolytic anemia with impaired hexokinase activity. J Clin Invest. 1969 Nov;48(11):1997–2007. doi: 10.1172/JCI106165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., PASSONNEAU J. V., HASSELBERGER F. X., SCHULZ D. W. EFFECT OF ISCHEMIA ON KNOWN SUBSTRATES AND COFACTORS OF THE GLYCOLYTIC PATHWAY IN BRAIN. J Biol Chem. 1964 Jan;239:18–30. [PubMed] [Google Scholar]
- MANO Y., SUZUKI K., YAMADA K., SHIMAZONO N. Enzymic studies on TPN L-hexonate dehydrogenase from rat liver. J Biochem. 1961 Jun;49:618–634. doi: 10.1093/oxfordjournals.jbchem.a127352. [DOI] [PubMed] [Google Scholar]
- Minakami S., Yoshikawa H. Studies on erythrocyte glycolysis. II. Free energy changes and rate limitings steps in erythrocyte glycolysis. J Biochem. 1966 Feb;59(2):139–144. doi: 10.1093/oxfordjournals.jbchem.a128274. [DOI] [PubMed] [Google Scholar]
- Moonsammy G. I., Stewart M. A. Purification and properties of brain aldose reductase and L-hexonate dehydrogenase. J Neurochem. 1967 Dec;14(12):1187–1193. doi: 10.1111/j.1471-4159.1967.tb06166.x. [DOI] [PubMed] [Google Scholar]
- Morrison A. D., Clements R. S., Jr, Travis S. B., Oski F., Winegrad A. I. Glucose utilization by the polyol pathway in human erythrocytes. Biochem Biophys Res Commun. 1970 Jul 13;40(1):199–205. doi: 10.1016/0006-291x(70)91066-1. [DOI] [PubMed] [Google Scholar]
- Morsches B., Holzmann H., Bettingen C. Zum Nachweis der Sorbit-Dehydrogenase in menschlichen Erythrocyten. Klin Wochenschr. 1969 Jun 15;47(12):672–673. doi: 10.1007/BF01884363. [DOI] [PubMed] [Google Scholar]
- Oski F. A., Gottlieb A. J., Miller W. W., Delivoria-Papadopoulos M. The effects of deoxygenation of adult and fetal hemoglobin on the synthesis of red cell 2,3-diphosphoglycerate and its in vivo consequences. J Clin Invest. 1970 Feb;49(2):400–407. doi: 10.1172/JCI106249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rose I. A., Warms J. V. Control of glycolysis in the human red blood cell. J Biol Chem. 1966 Nov 10;241(21):4848–4854. [PubMed] [Google Scholar]
- Stewart M. A., Sherman W. R., Kurien M. M., Moonsammy G. I., Wisgerhof M. Polyol accumulations in nervous tissue of rats with experimental diabetes and galactosaemia. J Neurochem. 1967 Nov;14(11):1057–1066. doi: 10.1111/j.1471-4159.1967.tb09516.x. [DOI] [PubMed] [Google Scholar]
- Sturman J. A. Pentose phosphate pathway metabolism by normal and glucose-6-phosphate dehydrogenase-deficient human red cell haemolysates. Clin Chim Acta. 1967 Nov;18(2):245–248. doi: 10.1016/0009-8981(67)90164-7. [DOI] [PubMed] [Google Scholar]
- VAN HAYNINGEN R. The sorbital pathway in the lens. Exp Eye Res. 1962 Jun;1:396–404. doi: 10.1016/s0014-4835(62)80029-3. [DOI] [PubMed] [Google Scholar]
