Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1971 Nov;50(11):2276–2282. doi: 10.1172/JCI106725

The inhibition by methylmalonic acid of malate transport by the dicarboxylate carrier in rat liver mitochondria

A possible explanation for hypoglycemia in methylmalonic aciduria

M L Halperin 1,2, C M Schiller 1,2, I B Fritz 1,2
PMCID: PMC292169  PMID: 4398537

Abstract

We report the effects of methylmalonic acid (MMA) on the mitochondrial transport systems for malate, α-oxoglutarate, and isocitrate. MMA is shown to be a substrate for all three carrier systems, and an inhibitor of the malate-phosphate exchange carrier. The effects of MMA on the metabolism of malate, oxoglutarate, and isocitrate by rat liver mitochondria are demonstrated to be mediated by the influence of MMA on the transport step. A hypothesis regarding the metabolic impairments responsible for hypoglycemia and ketonemia in methylmalonic aciduria is formulated in relation to these findings.

Full text

PDF
2276

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHAPPELL J. B., CROFTS A. R. THE EFFECT OF ATRACTYLATE AND OLIGOMYCIN ON THE BEHAVIOUR OF MITOCHONDRIA TOWARDS ADENINE NUCLEOTIDES. Biochem J. 1965 Jun;95:707–716. doi: 10.1042/bj0950707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chappell J. B. Systems used for the transport of substrates into mitochondria. Br Med Bull. 1968 May;24(2):150–157. doi: 10.1093/oxfordjournals.bmb.a070618. [DOI] [PubMed] [Google Scholar]
  3. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  4. Lardy H. A., Paetkau V., Walter P. Paths of carbon in gluconeogenesis and lipogenesis: the role of mitochondria in supplying precursors of phosphoenolpyruvate. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1410–1415. doi: 10.1073/pnas.53.6.1410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Levy H. L., Mudd S. H., Schulman J. D., Dreyfus P. M., Abeles R. H. A derangement in B12 metabolism associated with homocystinemia, cystathioninemia, hypomethioninemia and methylmalonic aciduria. Am J Med. 1970 Mar;48(3):390–397. doi: 10.1016/0002-9343(70)90070-7. [DOI] [PubMed] [Google Scholar]
  6. Lindblad B., Lindblad B. S., Olin P., Svanberg B., Zetterström R. Methylmalonic acidemia. A disorder associated with acidosis, hyperglycinemia, and hyperlactatemia. Acta Paediatr Scand. 1968 Sep;57(5):417–424. doi: 10.1111/j.1651-2227.1968.tb07314.x. [DOI] [PubMed] [Google Scholar]
  7. Morrow G., 3rd, Barness L. A., Auerbach V. H., DiGeorge A. M., Ando T., Nyhan W. L. Observations on the coexistence of methylmalonic acidemia and glycinemia. J Pediatr. 1969 May;74(5):680–690. doi: 10.1016/s0022-3476(69)80130-7. [DOI] [PubMed] [Google Scholar]
  8. Morrow G., 3rd, Barness L. A., Cardinale G. J., Abeles R. H., Flaks J. G. Congenital methylmalonic acidemia: enzymatic evidence for two forms of the disease. Proc Natl Acad Sci U S A. 1969 May;63(1):191–197. doi: 10.1073/pnas.63.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Morrow G., 3rd, Barness L. A. Studies in a patient with methylmalonic acidemia. J Pediatr. 1969 May;74(5):691–698. doi: 10.1016/s0022-3476(69)80131-9. [DOI] [PubMed] [Google Scholar]
  10. Mudd S. H., Levy H. L., Abeles R. H., Jennedy J. P., Jr A derangement in B 12 metabolism leading to homocystinemia, cystathioninemia and methylmalonic aciduria. Biochem Biophys Res Commun. 1969 Apr 10;35(1):121–126. doi: 10.1016/0006-291x(69)90491-4. [DOI] [PubMed] [Google Scholar]
  11. Oberholzer V. G., Levin B., Burgess E. A., Young W. F. Methylmalonic aciduria. An inborn error of metabolism leading to chronic metabolic acidosis. Arch Dis Child. 1967 Oct;42(225):492–504. doi: 10.1136/adc.42.225.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Robinson B. H., Chappell J. B. The inhibition of malate, tricarboxylate and oxoglutarate entry into mitochondria by 2-n-butylmalonate. Biochem Biophys Res Commun. 1967 Jul 21;28(2):249–255. doi: 10.1016/0006-291x(67)90437-8. [DOI] [PubMed] [Google Scholar]
  13. Rosenberg L. E., Lilljeqvist A. C., Hsia Y. E. Methylmalonic aciduria. An inborn error leading to metabolic acidosis, long-chain ketonuria and intermittent hyperglycinemia. N Engl J Med. 1968 Jun 13;278(24):1319–1322. doi: 10.1056/NEJM196806132782404. [DOI] [PubMed] [Google Scholar]
  14. Rosenberg L. E., Lilljeqvist A. C., Hsia Y. E., Rosenbloom F. M. Vitamin B12 dependent methylmalonicaciduria: defective B12 metabolism in cultured fibroblasts. Biochem Biophys Res Commun. 1969 Nov 6;37(4):607–614. doi: 10.1016/0006-291x(69)90853-5. [DOI] [PubMed] [Google Scholar]
  15. Smith R. M., Osborne-White W. S., Russell G. R. Methylmalonic acid and coenzyme A concentrations in the livers of pair-fed vitamin B 12-deficient and vitamin B 12-treated sheep. Biochem J. 1969 May;112(5):703–707. doi: 10.1042/bj1120703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weidemann M. J., Hems R., Williams D. L., Spray G. H., Krebs H. A. Gluconeogenesis from propionate in kidney and liver of the vitamin B12-deficient rat. Biochem J. 1970 Mar;117(1):177–181. doi: 10.1042/bj1170177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Williamson J. R., Anderson J., Browning E. T. Inhibition of gluconeogenesis by butylmalonate in perfused rat liver. J Biol Chem. 1970 Apr 10;245(7):1717–1726. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES