Abstract
Patients with chronic uremia develop neurologic defects which are similar to the demyelinating lesions seen in thiamine deficiency. The present study describes inhibitory effects of uremic material on nervous tissue transketolase, a thiamine-dependent enzyme of the pentose phosphate pathway which has been reported to have functional importance in the metabolism of myelinated nervous structures.
Transketolase activity (TKA) of normal human brain and spinal cord was measured by the conversion of ribose-5-phosphate (R5P) to sedoheptulose-7-phosphate (S7P). TKA was significantly inhibited by plasma, cerebrospinal fluid and low molecular weight dialysate fractions obtained from patients with uremic neuropathy, but not by samples from normal subjects. The specific effect on transketolase by uremic material was established by showing suppressed formation of S7P from R5P also in the presence of excess cofactor thiamine pyrophosphate and of the other substrate xylulose-5-phosphate. Uremic plasma likewise inhibited a partially purified transketolase preparation from bakers' yeast.
31 of 35 chronic uremic patients with inhibition values between 10 and 84% before or during the early phase of intermittent hemodialysis had evidence of neuropathy. Data of clinical grading of the neurologic deficits and values of motor nerve conduction velocity revealed a correlation between the extent of uremic neuropathy and the degree of nervous tissue transketolase inhibition.
Hemodialysis markedly reduced the inhibitory effects of the patients' plasma and the data indicate that uremic patients who received effective long-term dialysis treatment show a parallel decline of transketolase inhibition and uremic neuropathy.
The findings demonstrate that in patients with chronic renal failure, low molecular weight factors accumulate and inhibit nervous tissue transketolase. This biochemical defect—uncorrectable by thiamine but reversible by dialysis—may interfere with the metabolism of myelin-supporting cells, and/or of the axonal metabolism of medullated structures, and may thus contribute to the degeneration of myelinated nerves seen with uremic neuropathy.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ASBURY A. K., VICTOR M., ADAMS R. D. Uremic polyneuropathy. Arch Neurol. 1963 Apr;8:413–428. doi: 10.1001/archneur.1963.00460040083008. [DOI] [PubMed] [Google Scholar]
- Appenzeller O., Kornfeld M., MacGee J. Neuropathy in chronic renal disease. A microscopic, ultrastructural, and biochemical study of sural nerve biopsies. Arch Neurol. 1971 May;24(5):449–461. doi: 10.1001/archneur.1971.00480350083009. [DOI] [PubMed] [Google Scholar]
- BAKER A. B. Demyelination resulting from endogenous toxins. Res Publ Assoc Res Nerv Ment Dis. 1950;28:59–74. [PubMed] [Google Scholar]
- BRIN M., SHOHET S. S., DAVIDSON C. S. The effect of thiamine deficiency on the glucose oxidative pathway of rat erythrocytes. J Biol Chem. 1958 Jan;230(1):319–326. [PubMed] [Google Scholar]
- Collins G. H. Glial cell changes in the brain stem of thiamine-deficient rats. Am J Pathol. 1967 May;50(5):791–814. [PMC free article] [PubMed] [Google Scholar]
- DISCHE Z., BORENFREUND E. A new color reaction for the determination of aldopentose in presence of other saccharides. Biochim Biophys Acta. 1957 Mar;23(3):639–642. doi: 10.1016/0006-3002(57)90387-6. [DOI] [PubMed] [Google Scholar]
- DISCHE Z. Qualitative and quantitative colorimetric determination of heptoses. J Biol Chem. 1953 Oct;204(2):983–997. [PubMed] [Google Scholar]
- DISCHE Z., SHIGEURA H. T., LANDSBERG E. Mechanisms in the interconversion of ribose 5-phosphate and hexose 6-phosphate in human hemolyzates. 1. Sedohetulose and triose phosphates as intermediates in the conversion of ribose 5-phosphate to hexose 6-phosphate in human hemolyzates. Arch Biochem Biophys. 1960 Jul;89:123–133. doi: 10.1016/0003-9861(60)90022-9. [DOI] [PubMed] [Google Scholar]
- DREYFUS P. M. Clinical application of blood transketolase determinations. N Engl J Med. 1962 Sep 20;267:596–598. doi: 10.1056/NEJM196209202671204. [DOI] [PubMed] [Google Scholar]
- DREYFUS P. M. THE REGIONAL DISTRIBUTION OF TRANSKETOLASE IN THE NORMAL AND THE THIAMINE DEFICIENT NERVOUS SYSTEM. J Neuropathol Exp Neurol. 1965 Jan;24:119–129. doi: 10.1097/00005072-196501000-00011. [DOI] [PubMed] [Google Scholar]
- DREYFUS P. M., VICTOR M. Effects of thiamine deficiency on the central nervous system. Am J Clin Nutr. 1961 Jul-Aug;9:414–425. doi: 10.1093/ajcn/9.4.414. [DOI] [PubMed] [Google Scholar]
- Dinapoli R. P., Johnson W. J., Lambert E. H. Experience with a combined hemodialysis-renal transplantation program: neurologic aspects. Mayo Clin Proc. 1966 Dec;41(12):809–820. [PubMed] [Google Scholar]
- FRIEDE R. L., FLEMING L. M., KNOLLER M. A comparative mapping of enzymes involved in hexosemonophosphate shunt and citric acid cycle in the brain. J Neurochem. 1963 Apr;10:263–277. doi: 10.1111/j.1471-4159.1963.tb05042.x. [DOI] [PubMed] [Google Scholar]
- Forno L., Alston W. Uremic polyneuropathy. Acta Neurol Scand. 1967;43(5):640–654. doi: 10.1111/j.1600-0404.1967.tb05559.x. [DOI] [PubMed] [Google Scholar]
- HEGSTROM R. M., MURRAY J. S., PENDRAS J. P., BURNELL J. M., SCRIBNER B. H. Two year's experience with periodic hemodialysis in the treatment of chronic uremia. Trans Am Soc Artif Intern Organs. 1962;8:266–280. doi: 10.1097/00002480-196204000-00057. [DOI] [PubMed] [Google Scholar]
- Jebsen R. H., Tenckhoff H., Honet J. C. Natural history of uremic polyneuropathy and effects of dialysis. N Engl J Med. 1967 Aug 17;277(7):327–333. doi: 10.1056/NEJM196708172770702. [DOI] [PubMed] [Google Scholar]
- KILEY J., HINES O. ELECTROENCEPHALOGRAPHIC EVALUATION OF UREMIA. WAVE FREQUENCY EVALUATIONS ON 40 UREMIC PATIENTS. Arch Intern Med. 1965 Jul;116:67–73. doi: 10.1001/archinte.1965.03870010069009. [DOI] [PubMed] [Google Scholar]
- Konotey-Ahulu F. I., Baillod R., Comty C. M., Heron J. R., Shaldon S., Thomas P. K. Effect of periodic dialysis on the peripheral neuropathy of end-stage renal failure. Br Med J. 1965 Nov 20;2(5472):1212–1215. doi: 10.1136/bmj.2.5472.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lonergan E. T., Semar M., Lange K. Transketolase activity in uremia. Arch Intern Med. 1970 Nov;126(5):851–854. [PubMed] [Google Scholar]
- Lopez R. I., Collins G. H. Wernicke's encephalopathy. A complication of chronic hemodialysis. Arch Neurol. 1968 Mar;18(3):248–259. doi: 10.1001/archneur.1968.00470330038003. [DOI] [PubMed] [Google Scholar]
- McCandless D. W., Schenker S., Cook M. Encephalopathy of thiamine deficieny: studies of intracerebral mechanisms. J Clin Invest. 1968 Oct;47(10):2268–2280. doi: 10.1172/JCI105912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NORTH J. D., SINCLAIR H. M. Nutritional neuropathy; chronic thiamine deficiency in the rat. AMA Arch Pathol. 1956 Nov;62(5):341–353. [PubMed] [Google Scholar]
- Novello F., McLean P. The pentose phosphate pathway of glucose metabolism. Measurement of the non-oxidative reactions of the cycle. Biochem J. 1968 May;107(6):775–791. doi: 10.1042/bj1070775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OLSEN S. The brain in uremia. A patho-anatomical study of brains from 104 patients dying in renal insufficiency, with reference to the influence of complicating factors, especially ischemia of the brain. Acta Psychiatr Scand Suppl. 1961;36(156):1–128. [PubMed] [Google Scholar]
- Pendras J. P., Erickson R. V. Hemodialysis: a successful therapy for chronic uremia. Ann Intern Med. 1966 Feb;64(2):293–311. doi: 10.7326/0003-4819-64-2-293. [DOI] [PubMed] [Google Scholar]
- Prineas J. Peripheral nerve changes in thiamine-deficient rats. An electron microscope study. Arch Neurol. 1970 Dec;23(6):541–548. doi: 10.1001/archneur.1970.00480300063008. [DOI] [PubMed] [Google Scholar]
- Tyler H. R. Neurologic disorders seen in the uremic patient. Arch Intern Med. 1970 Nov;126(5):781–786. [PubMed] [Google Scholar]
- Tyler H. R. Neurological complications of dialysis, transplantation, and other forms of treatment in chronic uremia. Neurology. 1965 Dec;15(12):1081–1088. doi: 10.1212/wnl.15.12.1081. [DOI] [PubMed] [Google Scholar]
- WOLFE S. J., BRIN M., DAVIDSON C. S. The effect of thiamine deficiency on human erythrocyte metabolism. J Clin Invest. 1958 Nov;37(11):1476–1484. doi: 10.1172/JCI103739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yonezawa T., Iwanami H. An experimental study of thiamine deficiency in nervous tissue, using tissue culture technics. J Neuropathol Exp Neurol. 1966 Jul;25(3):362–372. doi: 10.1097/00005072-196607000-00002. [DOI] [PubMed] [Google Scholar]
