Skip to main content
Cellular and Molecular Life Sciences: CMLS logoLink to Cellular and Molecular Life Sciences: CMLS
. 2007 Sep 4;64(22):2933–2944. doi: 10.1007/s00018-007-7206-8

Custom-designed zinc finger nucleases: What is next?

J Wu 1, K Kandavelou 1, S Chandrasegaran 1,
PMCID: PMC2921987  NIHMSID: NIHMS225086  PMID: 17763826

Abstract.

Custom-designed zinc finger nucleases (ZFNs) – proteins designed to cut at specific DNA sequences – combine the non-specific cleavage domain (N) of Fok I restriction endonuclease with zinc finger proteins (ZFPs). Because the recognition specificities of the ZFPs can be easily manipulated experimentally, ZFNs offer a general way to deliver a targeted site-specific double-strand break (DSB) to the genome. They have become powerful tools for enhancing gene targeting – the process of replacing a gene within a genome of cells via homologous recombination (HR) – by several orders of magnitude. ZFN-mediated gene targeting thus confers molecular biologists with the ability to site-specifically and permanently alter not only plant and mammalian genomes but also many other organisms by stimulating HR via a targeted genomic DSB. Site-specific engineering of the plant and mammalian genome in cells so far has been hindered by the low frequency of HR. In ZFN-mediated gene targeting, this is circumvented by using designer ZFNs to cut at the desired chromosomal locus inside the cells. The DNA break is then patched up using the new investigator-provided genetic information and the cells’ own repair machinery. The accuracy and high efficiency of the HR process combined with the ability to design ZFNs that target most DNA sequences (if not all) makes ZFN technology not only a powerful research tool for site-specific manipulation of the plant and mammalian genomes, but also potentially for human therapeutics in the future, in particular for targeted engineering of the human genome of clinically transplantable stem cells.

Keywords. Zinc finger nucleases, gene targeting, genome engineering, site-specific modification, targeted mutagenesis, gene correction, homologous recombination, non-homologous end-joining

Footnotes

Received 26 April 2007; received after revision 16 July 2007; accepted 26 July 2007


Articles from Cellular and Molecular Life Sciences: CMLS are provided here courtesy of Springer

RESOURCES