Abstract
Arterial concentrations and net substrate exchange across the leg and splanchnic vascular bed were determined for glucose, lactate, pyruvate, and glycerol in healthy postabsorptive subjects at rest and during 40 min of exercise on a bicycle ergometer at work intensities of 400, 800, and 1200 kg-m/min.
Rising arterial glucose levels and small decreases in plasma insulin concentrations were found during heavy exercise. Significant arterial-femoral venous differences for glucose were demonstrated both at rest and during exercise, their magnitude increasing with work intensity as well as duration of the exercise performed. Estimated glucose uptake by the leg increased 7-fold after 40 min of light exercise and 10- to 20-fold at moderate to heavy exercise. Blood glucose uptake could at this time account for 28-37% of total substrate oxidation by leg muscle and 75-89% of the estimated carbohydrate oxidation.
Splanchnic glucose production increased progressively during exercise reaching levels 3 to 5-fold above resting values at the heavy work loads. Close agreement was observed between estimates of total glucose turnover during exercise based on leg glucose uptake and splanchnic glucose production. Hepatic gluconeogenesis—estimated from splanchnic removal of lactate, pyruvate, glycerol, and glycogenic amino acids—could supply a maximum of 25% of the resting hepatic glucose production but could account for only 6-11% of splanchnic glucose production after 40 min of moderate to heavy exercise.
It is concluded that: (a) blood glucose becomes an increasingly important substrate for muscle oxidation during prolonged exercise of this type: (b) peripheral glucose utilization increases in exercise despite a reduction in circulating insulin levels: (c) increased hepatic output of glucose, primarily by means of augmented glycogenolysis, contributes to blood glucose homeostasis in exercise and provides an important source of substrate for exercising muscle.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDRES R., CADER G., ZIERLER K. L. The quantitatively minor role of carbohydrate in oxidative metabolism by skeletal muscle in intact man in the basal state; measurements of oxygen and glucose uptake and carbon dioxide and lactate production in the forearm. J Clin Invest. 1956 Jun;35(6):671–682. doi: 10.1172/JCI103324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BEARN A. G., BILLING B., SHERLOCK S. The effect of adrenaline and noradrenaline on hepatic blood flow and splanchnic carbohydrate metabolism in man. J Physiol. 1951 Dec 28;115(4):430–441. doi: 10.1113/jphysiol.1951.sp004679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergström J., Hultman E. A study of the glycogen metabolism during exercise in man. Scand J Clin Lab Invest. 1967;19(3):218–228. doi: 10.3109/00365516709090629. [DOI] [PubMed] [Google Scholar]
- Blackard W. G., Nelson N. C. Portal and peripheral vein immunoreactive insulin concentrations before and after glucose infusion. Diabetes. 1970 May;19(5):302–306. doi: 10.2337/diab.19.5.302. [DOI] [PubMed] [Google Scholar]
- Cahill G. F., Jr, Herrera M. G., Morgan A. P., Soeldner J. S., Steinke J., Levy P. L., Reichard G. A., Jr, Kipnis D. M. Hormone-fuel interrelationships during fasting. J Clin Invest. 1966 Nov;45(11):1751–1769. doi: 10.1172/JCI105481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiandussi L., Greco F., Sardi G., Vaccarino A., Ferraris C. M., Curti B. Estimation of hepatic arterial and portal venous blood flow by direct catheterization of the vena porta through the umbilical cord in man. Preliminary results. Acta Hepatosplenol. 1968 May-Jun;15(3):166–171. [PubMed] [Google Scholar]
- Ekelund L. G. Circulatory and respiratory adaptation during prolonged exercise. Acta Physiol Scand Suppl. 1967;292:1–38. [PubMed] [Google Scholar]
- Felig P., Wahren J. Amino acid metabolism in exercising man. J Clin Invest. 1971 Dec;50(12):2703–2714. doi: 10.1172/JCI106771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felig P., Wahren J. Influence of endogenous insulin secretion on splanchnic glucose and amino acid metabolism in man. J Clin Invest. 1971 Aug;50(8):1702–1711. doi: 10.1172/JCI106659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GARBY L., VUILLE J. C. The amount of trapped plasma in a high speed micro-capillary hematocrit centrifuge. Scand J Clin Lab Invest. 1961;13:642–645. doi: 10.3109/00365516109137338. [DOI] [PubMed] [Google Scholar]
- GOLDSTEIN M. S., MULLICK V., HUDDLESTUN B., LEVINE R. Action of muscular work on transfer of sugars across cell barriers; comparison with action of insulin. Am J Physiol. 1953 May;173(2):212–216. doi: 10.1152/ajplegacy.1953.173.2.212. [DOI] [PubMed] [Google Scholar]
- HJELM M., DE VERDIERCH C. H. A METHODOLOGICAL STUDY OF THE ENZYMATIC DETERMINATION OF GLUCOSE IN BLOOD. Scand J Clin Lab Invest. 1963;15:415–428. doi: 10.3109/00365516309079764. [DOI] [PubMed] [Google Scholar]
- HUGGETT A. S., NIXON D. A. Use of glucose oxidase, peroxidase, and O-dianisidine in determination of blood and urinary glucose. Lancet. 1957 Aug 24;273(6991):368–370. doi: 10.1016/s0140-6736(57)92595-3. [DOI] [PubMed] [Google Scholar]
- Hagenfeldt L. A gas chromatographic method for the determination of individual free fatty acids in plasma. Clin Chim Acta. 1966 Feb;13(2):266–268. doi: 10.1016/0009-8981(66)90304-4. [DOI] [PubMed] [Google Scholar]
- Havel R. J., Pernow B., Jones N. L. Uptake and release of free fatty acids and other metabolites in the legs of exercising men. J Appl Physiol. 1967 Jul;23(1):90–99. doi: 10.1152/jappl.1967.23.1.90. [DOI] [PubMed] [Google Scholar]
- Hermansen L., Hultman E., Saltin B. Muscle glycogen during prolonged severe exercise. Acta Physiol Scand. 1967 Oct-Nov;71(2):129–139. doi: 10.1111/j.1748-1716.1967.tb03719.x. [DOI] [PubMed] [Google Scholar]
- Häggendal J., Hartley L. H., Saltin B. Arterial noradrenaline concentration during exercise in relation to the relative work levels. Scand J Clin Lab Invest. 1970 Dec;26(4):337–342. doi: 10.3109/00365517009046242. [DOI] [PubMed] [Google Scholar]
- Jorfeldt L., Wahren J. Human forearm muscle metabolism during exercise. V. Quantitative aspects of glucose uptake and lactate production during prolonged exercise. Scand J Clin Lab Invest. 1970 Aug;26(1):73–81. doi: 10.3109/00365517009049217. [DOI] [PubMed] [Google Scholar]
- Keul J., Doll E., Keppler D. The substrate supply of the human skeletal muscle at rest, during and after work. Experientia. 1967 Nov 15;23(11):974–979. doi: 10.1007/BF02136259. [DOI] [PubMed] [Google Scholar]
- Klassen G. A., Andrew G. M., Becklake M. R. Effect of training on total and regional blood flow and metabolism in paddlers. J Appl Physiol. 1970 Apr;28(4):397–406. doi: 10.1152/jappl.1970.28.4.397. [DOI] [PubMed] [Google Scholar]
- MYERS J. D. Net splanchnic glucose production in normal man and in various disease states. J Clin Invest. 1950 Nov;29(11):1421–1429. doi: 10.1172/JCI102380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owen O. E., Felig P., Morgan A. P., Wahren J., Cahill G. F., Jr Liver and kidney metabolism during prolonged starvation. J Clin Invest. 1969 Mar;48(3):574–583. doi: 10.1172/JCI106016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pernow B., Wahren J., Zetterquist S. Studies on the peripheral circulation and metabolism in man. IV. Oxygen utilization and lactate formation in the legs of healthy young men during strenuous exercise. Acta Physiol Scand. 1965 Aug;64(4):289–298. doi: 10.1111/j.1748-1716.1965.tb04182.x. [DOI] [PubMed] [Google Scholar]
- Porte D., Jr, Williams R. H. Inhibition of insulin release by norepinephrine in man. Science. 1966 May 27;152(3726):1248–1250. doi: 10.1126/science.152.3726.1248. [DOI] [PubMed] [Google Scholar]
- Pozefsky T., Felig P., Tobin J. D., Soeldner J. S., Cahill G. F., Jr Amino acid balance across tissues of the forearm in postabsorptive man. Effects of insulin at two dose levels. J Clin Invest. 1969 Dec;48(12):2273–2282. doi: 10.1172/JCI106193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pruett E. D. Plasma insulin concentrations during prolonged work at near maximal oxygen uptake. J Appl Physiol. 1970 Aug;29(2):155–158. doi: 10.1152/jappl.1970.29.2.155. [DOI] [PubMed] [Google Scholar]
- RABINOWITZ D., ZIERLER K. L. Role of free fatty acids in forearm metabolism in man, quantitated by use of insulin. J Clin Invest. 1962 Dec;41:2191–2197. doi: 10.1172/JCI104678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REICHARD G. A., ISSEKUTZ B., Jr, KIMBEL P., PUTNAM R. C., HOCHELLA N. J., WEINHOUSE S. Blood glucose metabolism in man during muscular work. J Appl Physiol. 1961 Nov;16:1001–1005. doi: 10.1152/jappl.1961.16.6.1001. [DOI] [PubMed] [Google Scholar]
- Rosselin G., Assan R., Yalow R. S., Berson S. A. Separation of antibody-bound and unbound peptide hormones labelled with iodine-131 by talcum powder and precipitated silica. Nature. 1966 Oct 22;212(5060):355–357. doi: 10.1038/212355a0. [DOI] [PubMed] [Google Scholar]
- Rowell L. B., Brengelmann G. L., Blackmon J. R., Twiss R. D., Kusumi F. Splanchnic blood flow and metabolism in heat-stressed man. J Appl Physiol. 1968 Apr;24(4):475–484. doi: 10.1152/jappl.1968.24.4.475. [DOI] [PubMed] [Google Scholar]
- Rowell L. B., Kraning K. K., 2nd, Evans T. O., Kennedy J. W., Blackmon J. R., Kusumi F. Splanchnic removal of lactate and pyruvate during prolonged exercise in man. J Appl Physiol. 1966 Nov;21(6):1773–1783. doi: 10.1152/jappl.1966.21.6.1773. [DOI] [PubMed] [Google Scholar]
- Rowell L. B., Masoro E. J., Spencer M. J. Splanchnic metabolism in exercising man. J Appl Physiol. 1965 Sep;20(5):1032–1037. doi: 10.1152/jappl.1965.20.5.1032. [DOI] [PubMed] [Google Scholar]
- SANDERS C. A., LEVINSON G. E., ABELMANN W. H., FREINKEL N. EFFECT OF EXERCISE ON THE PERIPHERAL UTILIZATION OF GLUCOSE IN MAN. N Engl J Med. 1964 Jul 30;271:220–225. doi: 10.1056/NEJM196407302710502. [DOI] [PubMed] [Google Scholar]
- SEGAL S., BLAIR A. E., WYNGAARDEN J. B. An enzymatic spectrophotometric method for the determination of pyruvic acid in blood. J Lab Clin Med. 1956 Jul;48(1):137–143. [PubMed] [Google Scholar]
- VENDSALU A. Studies on adrenaline and noradrenaline in human plasma. Acta Physiol Scand Suppl. 1960;49(173):1–123. [PubMed] [Google Scholar]
- Wahren J. Human forearm muscle metabolism during exercise. IV. Glucose uptake at different work intensities. Scand J Clin Lab Invest. 1970 Mar;25(2):129–135. doi: 10.3109/00365517009049194. [DOI] [PubMed] [Google Scholar]