Abstract
Arterial-venous concentration differences for individual free fatty acids (FFA) were measured across the deep tissues of the forearm, the splanchnic vascular bed, and the kidney in healthy, postabsorptive subjects. In addition, arterial-portal venous FFA differences were determined in five patients undergoing elective cholecystectomy.
The differences in fractional uptake among the individual FFA across the forearm were small and not statistically significant. Splanchnic fractional uptake was high for FFA with short chain lengths and rose with increasing degree of unsaturation. Small, negative arterial-portal venous differences for individual FFA were observed, indicating that arterial-hepatic venous FFA differences mainly reflect hepatic uptake. When the arterial FFA concentration was reduced to approximately 25% of the control values by the administration of nicotinic acid, net uptake of total FFA ceased but there was release of stearic acid and uptake of lauric, myristic, and palmitoleic acid to the splanchnic region. Muscle and liver uptakes of individual FFA were both dependent on their arterial concentrations with the exception of the splanchnic uptake of stearic acid. There was no uptake of free arachidonic acid by either muscle or liver, nor was there significant uptake of any of the free fatty acids by the kidney. It is concluded (a) that there are important quantitative differences between the net exchanges of individual FFA across the splanchnic vascular bed, (b) that tracer studies of FFA metabolism require the determination of individual FFA specific activities, (c) that palmitic and oleic acid appear to be suitable tracers for the entire FFA fraction in most instances.
Full text
PDF![2324](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9452/292398/2754e3e0e9d0/jcinvest00205-0118.png)
![2325](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9452/292398/919774bb3c16/jcinvest00205-0119.png)
![2326](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9452/292398/fb1aca63abb7/jcinvest00205-0120.png)
![2327](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9452/292398/782d919781cb/jcinvest00205-0121.png)
![2328](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9452/292398/6a54d47ad54f/jcinvest00205-0122.png)
![2329](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9452/292398/c4f0e5c72d67/jcinvest00205-0123.png)
![2330](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9452/292398/9dba2106626f/jcinvest00205-0124.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AYDIN A., SOKAL J. E. UPTAKE OF PLASMA FREE FATTY ACIDS BY THE ISOLATED RAT LIVER: EFFECT OF GLUCAGON. Am J Physiol. 1963 Oct;205:667–670. doi: 10.1152/ajplegacy.1963.205.4.667. [DOI] [PubMed] [Google Scholar]
- Basso L. V., Havel R. J. Hepatic metabolism of free fatty acids in normal and diabetic dogs. J Clin Invest. 1970 Mar;49(3):537–547. doi: 10.1172/JCI106264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CARLSTEN A., HALLGREN B., JAGENBURG R., SVANBORG A., WERKOE L. MYOCARDIAL ARTERIOVENOUS DIFFERENCES OF INDIVIDUAL FREE FATTY ACIDS IN HEALTHY HUMAN INDIVIDUALS. Metabolism. 1963 Dec;12:1063–1071. [PubMed] [Google Scholar]
- Carlsten A., Hallgren B., Jagenburg R., Svanborg A., Werkö L. Arterio-hepatic venous differences of free fatty acids and amino acids. Studies in patients with diabetes or essential hypercholesterolemia, and in healthy individuals. Acta Med Scand. 1967 Feb;181(2):199–207. doi: 10.1111/j.0954-6820.1967.tb07246.x. [DOI] [PubMed] [Google Scholar]
- FINE M. B., WILLIAMS R. H. Effect of fasting, epinephrine and glucose and insulin on hepatic uptake of nonesterified fatty acids. Am J Physiol. 1960 Sep;199:403–406. doi: 10.1152/ajplegacy.1960.199.3.403. [DOI] [PubMed] [Google Scholar]
- GOERANSSON G., OLIVECRONA T. THE METABOLISM OF FATTY ACIDS IN THE RAT. I. PALMITIC ACID. Acta Physiol Scand. 1964 Nov;62:224–239. doi: 10.1111/j.1748-1716.1964.tb03970.x. [DOI] [PubMed] [Google Scholar]
- GOERANSSON G. THE METABOLISM OF FATTY ACIDS IN THE RAT. IV. STEARIC ACID. Acta Physiol Scand. 1965 Apr;63:423–427. doi: 10.1111/j.1748-1716.1965.tb04084.x. [DOI] [PubMed] [Google Scholar]
- GOERANSSON G. THE METABOLISM OF FATTY ACIDS IN THE RAT. V. PALMITOLEIC ACID. Acta Physiol Scand. 1965 Apr;63:428–433. doi: 10.1111/j.1748-1716.1965.tb04085.x. [DOI] [PubMed] [Google Scholar]
- GOLD M., SPITZER J. J. METABOLISM OF FREE FATTY ACIDS BY MYOCARDIUM AND KIDNEY. Am J Physiol. 1964 Jan;206:153–158. doi: 10.1152/ajplegacy.1964.206.1.153. [DOI] [PubMed] [Google Scholar]
- Göransson G. The metabolism of fatty acids in the rat. VII. Linoleic acid. Acta Physiol Scand. 1965 Jul;64(3):204–210. doi: 10.1111/j.1748-1716.1965.tb04170.x. [DOI] [PubMed] [Google Scholar]
- HARRIS P., CHLOUVERAKIS C., GLOSTER J., JONES J. H. Arterio-venous differences in the composition of plasma free fatty acids in various regions of the body. Clin Sci. 1962 Feb;22:113–118. [PubMed] [Google Scholar]
- Hagenfeldt L. A gas chromatographic method for the determination of individual free fatty acids in plasma. Clin Chim Acta. 1966 Feb;13(2):266–268. doi: 10.1016/0009-8981(66)90304-4. [DOI] [PubMed] [Google Scholar]
- Hagenfeldt L., Wahren J. Human forearm muscle metabolism during exercise. II. Uptake, release and oxidation of individual FFA and glycerol. Scand J Clin Lab Invest. 1968;21(3):263–276. doi: 10.3109/00365516809076994. [DOI] [PubMed] [Google Scholar]
- Hagenfeldt L., Wahren J. Simultaneous uptake and release of individual free fatty acids in human forearm muscle during exercise. Life Sci. 1966 Feb;5(4):357–364. doi: 10.1016/0024-3205(66)90021-x. [DOI] [PubMed] [Google Scholar]
- Havel R. J., Pernow B., Jones N. L. Uptake and release of free fatty acids and other metabolites in the legs of exercising men. J Appl Physiol. 1967 Jul;23(1):90–99. doi: 10.1152/jappl.1967.23.1.90. [DOI] [PubMed] [Google Scholar]
- Hollenberg C. H., Angel A. Relation of fatty acid structure to release and esterification of free fatty acids. Am J Physiol. 1963 Nov;205(5):909–912. doi: 10.1152/ajplegacy.1963.205.5.909. [DOI] [PubMed] [Google Scholar]
- Nakamura H., Faludi G., Spitzer J. J. Changes of individual free fatty acids during glucose tolerance test. Diabetes. 1967 Mar;16(3):175–180. doi: 10.2337/diab.16.3.175. [DOI] [PubMed] [Google Scholar]
- RABINOWITZ D., ZIERLER K. L. Role of free fatty acids in forearm metabolism in man, quantitated by use of insulin. J Clin Invest. 1962 Dec;41:2191–2197. doi: 10.1172/JCI104678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROTHLIN M. E., BING R. J. Extraction and release of individual free fatty acids by the heart and fat depots. J Clin Invest. 1961 Aug;40:1380–1386. doi: 10.1172/JCI104369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spitzer J. J., Nakamura H., Hori S., Gold M. Hepatic and splanchnic uptake and oxidation of free fatty acids. Proc Soc Exp Biol Med. 1969 Oct;132(1):281–286. doi: 10.3181/00379727-132-34198. [DOI] [PubMed] [Google Scholar]
- TROUT D. L., ESTES E. H., Jr Factors affecting liver uptake of serum free stearic acid-1-C14. Am J Physiol. 1962 Dec;203:1024–1028. doi: 10.1152/ajplegacy.1962.203.6.1024. [DOI] [PubMed] [Google Scholar]
- Warembourg H., Biserte G., Jaillard J., Sezille G. Variations quantitatives et qualitatives des acides gras non estérifiés et des triglycérides circulants induites par le glucagon. Clin Chim Acta. 1970 Apr;28(1):103–110. doi: 10.1016/0009-8981(70)90166-x. [DOI] [PubMed] [Google Scholar]
- Warembourg H., Biserte G., Sezille G., Jaillard J., Bertrand M. Influence du glucose sur la composition des acides gras non estérifiés du plasma humain normal. Clin Chim Acta. 1968 Nov;22(3):349–353. doi: 10.1016/0009-8981(68)90035-1. [DOI] [PubMed] [Google Scholar]