Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2007 Dec 6;64(Pt 1):m135. doi: 10.1107/S160053680705489X

2-Amino-4-(4-bromo­phen­yl)-6-ferro­cenyl­pyridine-3-carbonitrile

Run-Hong Jia a, Shu-Jiang Tu b,*
PMCID: PMC2924174  PMID: 21200492

Abstract

The title compound, [Fe(C5H5)(C17H11BrN3)], was synthesized by the reaction of 4-bromo­benzaldehyde, acetyl­ferrocene and ammonium acetate in an aqueous medium. The crystal packing is stabilized by inter­molecular N—H⋯N hydrogen bonds. The dihedral angles between the phenyl ring and the pyridine and cyclopentadienyl rings are 51.67 (13) and 12.12 (21)°, respectively.

Related literature

For related literature, see: Alyoubi (2000); Desai & Shah (2003); Dombrowski et al. (1986); Murata et al. (2004).graphic file with name e-64-0m135-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C17H11BrN3)]

  • M r = 458.14

  • Monoclinic, Inline graphic

  • a = 12.250 (2) Å

  • b = 7.4511 (12) Å

  • c = 20.698 (3) Å

  • β = 97.729 (3)°

  • V = 1872.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.95 mm−1

  • T = 298 (2) K

  • 0.16 × 0.11 × 0.07 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.650, T max = 0.820

  • 9276 measured reflections

  • 3290 independent reflections

  • 2327 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.094

  • S = 1.02

  • 3290 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680705489X/bq2041sup1.cif

e-64-0m135-sup1.cif (19.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680705489X/bq2041Isup2.hkl

e-64-0m135-Isup2.hkl (161.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N3i 0.86 2.29 3.050 (5) 148

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the National Natural Science Foundation of China (grant No. 20672090) and the Natural Science Foundation of the Jiangsu Province (grant No. BK2006033) for financial support.

supplementary crystallographic information

Comment

Metallocenes are known to exhibit a wide range of biological activity. Among them, ferrocene has attracted special attention since it is neutral, chemically stable, non-toxic and able to cross cell membranes (Dombrowski et al., 1986). In fact, it is now well established that the incorporation of ferrocene units in organic molecules introduces significant and new properties in these materials. In addition, it has been demonstrated that molecules containing cyanopyridine moiety may be able to work as ligands towards transition-metal ions (Alyoubi, 2000), new drugs (Murata et al., 2004 and Desai et al., 2003), and significant intermediates for the synthesis of important vitamins such as nicotinic acids and nicotinamides. For these reasons, the synthesis of new compounds containing cyanopyridine derivatives is strongly desired. In this paper we report the crystal structure of the title compound (I).

In the crystal structure, the dihedral angle between the C1/C2/C3/C4/C5/N1 plane and the C17—C22 benzene ring is 51.65 (13)°.The dihedral angle between the C1/C2/C3/C4/C5/N1 plane and the C11—C16 ring is 12.21 (14)°. The molecules are connected via N—H···N hydrogen bonds, forming a three-dimensional network (Fig. 2).

Experimental

Compound (I) was prepared by the reaction of 4-bromobenzaldehyde (2 mmol), malononitrile (2 mmol), acetylferrocene (2 mmol) and ammonium acetate (4 mmol) in water (2 ml). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a 95% aqueous ethanol solution (yield 94%; m.p. >573 K). IR (cm-1): 3457, 3354, 2211; 1H NMR (DMSO-d6): 4.10 (5H, s, ferrocenyl), 4.50 (2H, s, ferrocenyl), 5.04 (2H, s, ferrocenyl), 6.83 (2H, brs, NH2), 6.94 (1H, s, ArH), 7.60 (2H, d, J = 8.0 Hz, ArH), 7.77 (2H, d, J = 8.0 Hz, ArH).7.87 (2H, brs, NH2), 7.88–8.01 (4H, m, ArH), 11.85 (1H, s, NH).

Refinement

All H atoms were positioned geometrically and treated as riding, with N—H = 0.86 Å and C—H = 0.93–0.97 Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound, showing 30% probability displacement ellipsoids.

Crystal data

[Fe(C5H5)(C17H11BrN3)] F(000) = 920
Mr = 458.14 Dx = 1.625 Mg m3
Monoclinic, P21/n Melting point > 573 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 12.250 (2) Å Cell parameters from 9276 reflections
b = 7.4511 (12) Å θ = 1.8–25.0°
c = 20.698 (3) Å µ = 2.95 mm1
β = 97.729 (3)° T = 298 K
V = 1872.2 (5) Å3 Block, red
Z = 4 0.16 × 0.11 × 0.07 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3290 independent reflections
Radiation source: fine-focus sealed tube 2327 reflections with I > 2σ(I)
graphite Rint = 0.042
phi and ω scans θmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −14→12
Tmin = 0.650, Tmax = 0.820 k = −8→8
9276 measured reflections l = −21→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.873P] where P = (Fo2 + 2Fc2)/3
3290 reflections (Δ/σ)max = 0.001
244 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.50 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.88176 (4) 0.56744 (7) 0.10748 (3) 0.03294 (17)
Br1 1.31762 (4) −0.46355 (6) 0.38737 (3) 0.06095 (19)
N1 0.8559 (2) 0.4500 (4) 0.27746 (15) 0.0335 (7)
N2 0.8621 (3) 0.5510 (4) 0.38201 (16) 0.0441 (9)
H2A 0.8136 0.6301 0.3678 0.053*
H2B 0.8871 0.5466 0.4228 0.053*
N3 1.0484 (3) 0.3011 (5) 0.48388 (19) 0.0596 (11)
C1 0.8991 (3) 0.4337 (5) 0.34017 (18) 0.0319 (9)
C2 0.9785 (3) 0.3014 (5) 0.36174 (18) 0.0302 (8)
C3 1.0146 (3) 0.1847 (5) 0.31590 (18) 0.0302 (9)
C4 0.9720 (3) 0.2070 (5) 0.25112 (18) 0.0313 (9)
H4 0.9956 0.1339 0.2193 0.038*
C5 0.8928 (3) 0.3408 (5) 0.23362 (17) 0.0274 (8)
C6 0.8419 (3) 0.3651 (5) 0.16587 (17) 0.0295 (8)
C7 0.7494 (3) 0.4767 (5) 0.14559 (18) 0.0328 (9)
H7 0.7103 0.5424 0.1731 0.039*
C8 0.7267 (3) 0.4714 (5) 0.0769 (2) 0.0404 (10)
H8 0.6696 0.5310 0.0514 0.048*
C9 0.8063 (3) 0.3594 (5) 0.05372 (19) 0.0384 (9)
H9 0.8107 0.3334 0.0102 0.046*
C10 0.8781 (3) 0.2935 (5) 0.10802 (18) 0.0343 (9)
H10 0.9379 0.2175 0.1064 0.041*
C11 1.0377 (4) 0.6526 (6) 0.1005 (2) 0.0542 (12)
H11 1.0979 0.5798 0.0960 0.065*
C12 1.0040 (4) 0.7097 (6) 0.1601 (3) 0.0596 (13)
H12 1.0381 0.6819 0.2018 0.072*
C13 0.9095 (4) 0.8163 (6) 0.1444 (3) 0.0597 (13)
H13 0.8697 0.8711 0.1741 0.072*
C14 0.8852 (4) 0.8261 (6) 0.0762 (3) 0.0586 (13)
H14 0.8269 0.8885 0.0530 0.070*
C15 0.9639 (4) 0.7257 (6) 0.0495 (2) 0.0533 (12)
H15 0.9671 0.7098 0.0053 0.064*
C16 1.0201 (3) 0.2954 (5) 0.4291 (2) 0.0395 (10)
C17 1.0911 (3) 0.0326 (5) 0.33629 (17) 0.0306 (8)
C18 1.1829 (3) 0.0036 (5) 0.3047 (2) 0.0439 (10)
H18 1.1986 0.0831 0.2725 0.053*
C19 1.2509 (3) −0.1418 (6) 0.3206 (2) 0.0461 (11)
H19 1.3125 −0.1601 0.2996 0.055*
C20 1.2267 (3) −0.2594 (5) 0.3678 (2) 0.0389 (10)
C21 1.1376 (3) −0.2323 (5) 0.3997 (2) 0.0484 (11)
H21 1.1226 −0.3120 0.4320 0.058*
C22 1.0702 (3) −0.0868 (5) 0.3841 (2) 0.0455 (11)
H22 1.0097 −0.0686 0.4060 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0303 (3) 0.0277 (3) 0.0417 (3) −0.0076 (2) 0.0078 (2) 0.0011 (2)
Br1 0.0584 (3) 0.0489 (3) 0.0780 (4) 0.0306 (2) 0.0181 (3) 0.0102 (3)
N1 0.0335 (18) 0.0312 (17) 0.0363 (18) 0.0084 (14) 0.0065 (14) −0.0016 (15)
N2 0.048 (2) 0.045 (2) 0.0387 (19) 0.0278 (17) 0.0043 (16) −0.0063 (16)
N3 0.070 (3) 0.065 (3) 0.041 (2) 0.031 (2) −0.002 (2) −0.005 (2)
C1 0.028 (2) 0.030 (2) 0.038 (2) 0.0045 (16) 0.0073 (17) −0.0006 (18)
C2 0.030 (2) 0.0270 (19) 0.033 (2) 0.0053 (16) 0.0019 (16) −0.0024 (16)
C3 0.027 (2) 0.0275 (19) 0.037 (2) −0.0008 (16) 0.0081 (17) 0.0005 (17)
C4 0.027 (2) 0.0300 (19) 0.039 (2) 0.0041 (16) 0.0100 (17) −0.0031 (17)
C5 0.026 (2) 0.0267 (19) 0.031 (2) −0.0012 (15) 0.0091 (16) −0.0010 (16)
C6 0.028 (2) 0.0263 (18) 0.035 (2) −0.0034 (16) 0.0058 (16) −0.0018 (17)
C7 0.029 (2) 0.035 (2) 0.036 (2) −0.0065 (17) 0.0084 (16) −0.0015 (17)
C8 0.033 (2) 0.040 (2) 0.048 (3) −0.0059 (18) 0.0007 (18) 0.005 (2)
C9 0.041 (2) 0.041 (2) 0.034 (2) −0.013 (2) 0.0084 (18) −0.0028 (19)
C10 0.037 (2) 0.0253 (19) 0.042 (2) −0.0050 (17) 0.0114 (18) −0.0030 (18)
C11 0.036 (3) 0.052 (3) 0.075 (4) −0.018 (2) 0.012 (2) 0.008 (3)
C12 0.060 (3) 0.052 (3) 0.064 (3) −0.035 (3) −0.005 (3) 0.003 (2)
C13 0.067 (4) 0.035 (2) 0.080 (4) −0.021 (2) 0.023 (3) −0.012 (3)
C14 0.055 (3) 0.035 (2) 0.088 (4) −0.006 (2) 0.020 (3) 0.011 (3)
C15 0.053 (3) 0.050 (3) 0.059 (3) −0.017 (2) 0.020 (2) 0.011 (2)
C16 0.042 (3) 0.037 (2) 0.039 (3) 0.0170 (19) 0.006 (2) −0.0008 (19)
C17 0.028 (2) 0.0270 (19) 0.037 (2) 0.0028 (16) 0.0087 (16) −0.0027 (17)
C18 0.048 (3) 0.038 (2) 0.049 (3) 0.0091 (19) 0.018 (2) 0.006 (2)
C19 0.038 (2) 0.047 (2) 0.058 (3) 0.011 (2) 0.024 (2) 0.003 (2)
C20 0.033 (2) 0.032 (2) 0.052 (3) 0.0118 (17) 0.0080 (19) −0.003 (2)
C21 0.050 (3) 0.039 (2) 0.061 (3) 0.012 (2) 0.023 (2) 0.013 (2)
C22 0.040 (2) 0.042 (2) 0.059 (3) 0.012 (2) 0.024 (2) 0.007 (2)

Geometric parameters (Å, °)

Fe1—C7 2.013 (4) C7—C8 1.412 (5)
Fe1—C13 2.017 (4) C7—H7 0.9300
Fe1—C12 2.028 (4) C8—C9 1.416 (5)
Fe1—C6 2.033 (4) C8—H8 0.9300
Fe1—C14 2.035 (4) C9—C10 1.419 (5)
Fe1—C11 2.037 (4) C9—H9 0.9300
Fe1—C15 2.041 (4) C10—H10 0.9300
Fe1—C10 2.042 (4) C11—C15 1.404 (6)
Fe1—C8 2.049 (4) C11—C12 1.417 (6)
Fe1—C9 2.054 (4) C11—H11 0.9300
Br1—C20 1.897 (4) C12—C13 1.406 (6)
N1—C1 1.340 (5) C12—H12 0.9300
N1—C5 1.342 (4) C13—C14 1.404 (7)
N2—C1 1.351 (4) C13—H13 0.9300
N2—H2A 0.8600 C14—C15 1.392 (6)
N2—H2B 0.8600 C14—H14 0.9300
N3—C16 1.140 (5) C15—H15 0.9300
C1—C2 1.415 (5) C17—C22 1.380 (5)
C2—C3 1.402 (5) C17—C18 1.392 (5)
C2—C16 1.420 (6) C18—C19 1.379 (5)
C3—C4 1.382 (5) C18—H18 0.9300
C3—C17 1.495 (5) C19—C20 1.374 (5)
C4—C5 1.404 (5) C19—H19 0.9300
C4—H4 0.9300 C20—C21 1.365 (5)
C5—C6 1.468 (5) C21—C22 1.375 (5)
C6—C7 1.423 (5) C21—H21 0.9300
C6—C10 1.435 (5) C22—H22 0.9300
C7—Fe1—C13 105.30 (18) C6—C7—Fe1 70.1 (2)
C7—Fe1—C12 122.73 (18) C8—C7—H7 125.6
C13—Fe1—C12 40.67 (19) C6—C7—H7 125.6
C7—Fe1—C6 41.17 (14) Fe1—C7—H7 124.8
C13—Fe1—C6 119.91 (18) C7—C8—C9 107.8 (3)
C12—Fe1—C6 106.72 (17) C7—C8—Fe1 68.3 (2)
C7—Fe1—C14 119.64 (17) C9—C8—Fe1 70.0 (2)
C13—Fe1—C14 40.54 (18) C7—C8—H8 126.1
C12—Fe1—C14 68.3 (2) C9—C8—H8 126.1
C6—Fe1—C14 155.28 (18) Fe1—C8—H8 127.2
C7—Fe1—C11 160.93 (17) C8—C9—C10 108.5 (3)
C13—Fe1—C11 68.2 (2) C8—C9—Fe1 69.6 (2)
C12—Fe1—C11 40.81 (18) C10—C9—Fe1 69.3 (2)
C6—Fe1—C11 125.17 (17) C8—C9—H9 125.7
C14—Fe1—C11 67.84 (19) C10—C9—H9 125.7
C7—Fe1—C15 155.64 (17) Fe1—C9—H9 127.0
C13—Fe1—C15 67.7 (2) C9—C10—C6 107.7 (3)
C12—Fe1—C15 68.07 (19) C9—C10—Fe1 70.2 (2)
C6—Fe1—C15 162.71 (17) C6—C10—Fe1 69.1 (2)
C14—Fe1—C15 39.94 (17) C9—C10—H10 126.1
C11—Fe1—C15 40.27 (17) C6—C10—H10 126.1
C7—Fe1—C10 69.07 (15) Fe1—C10—H10 126.2
C13—Fe1—C10 156.9 (2) C15—C11—C12 107.7 (5)
C12—Fe1—C10 122.33 (18) C15—C11—Fe1 70.1 (2)
C6—Fe1—C10 41.23 (14) C12—C11—Fe1 69.3 (2)
C14—Fe1—C10 161.78 (19) C15—C11—H11 126.2
C11—Fe1—C10 109.48 (18) C12—C11—H11 126.2
C15—Fe1—C10 126.43 (17) Fe1—C11—H11 126.1
C7—Fe1—C8 40.67 (15) C13—C12—C11 107.2 (4)
C13—Fe1—C8 122.68 (19) C13—C12—Fe1 69.2 (2)
C12—Fe1—C8 159.3 (2) C11—C12—Fe1 69.9 (2)
C6—Fe1—C8 68.75 (15) C13—C12—H12 126.4
C14—Fe1—C8 106.87 (18) C11—C12—H12 126.4
C11—Fe1—C8 157.92 (18) Fe1—C12—H12 126.0
C15—Fe1—C8 122.02 (18) C14—C13—C12 108.6 (5)
C10—Fe1—C8 68.44 (16) C14—C13—Fe1 70.4 (3)
C7—Fe1—C9 68.36 (15) C12—C13—Fe1 70.1 (2)
C13—Fe1—C9 160.0 (2) C14—C13—H13 125.7
C12—Fe1—C9 158.7 (2) C12—C13—H13 125.7
C6—Fe1—C9 68.62 (15) Fe1—C13—H13 125.3
C14—Fe1—C9 124.71 (19) C15—C14—C13 107.8 (5)
C11—Fe1—C9 123.72 (18) C15—C14—Fe1 70.3 (2)
C15—Fe1—C9 109.84 (17) C13—C14—Fe1 69.0 (3)
C10—Fe1—C9 40.53 (14) C15—C14—H14 126.1
C8—Fe1—C9 40.36 (15) C13—C14—H14 126.1
C1—N1—C5 118.3 (3) Fe1—C14—H14 126.2
C1—N2—H2A 120.0 C14—C15—C11 108.7 (4)
C1—N2—H2B 120.0 C14—C15—Fe1 69.8 (2)
H2A—N2—H2B 120.0 C11—C15—Fe1 69.7 (2)
N1—C1—N2 116.1 (3) C14—C15—H15 125.6
N1—C1—C2 122.3 (3) C11—C15—H15 125.6
N2—C1—C2 121.6 (3) Fe1—C15—H15 126.5
C3—C2—C1 119.0 (3) N3—C16—C2 174.9 (4)
C3—C2—C16 122.8 (3) C22—C17—C18 118.5 (3)
C1—C2—C16 118.2 (3) C22—C17—C3 121.4 (3)
C4—C3—C2 118.0 (3) C18—C17—C3 120.0 (3)
C4—C3—C17 120.4 (3) C19—C18—C17 120.7 (4)
C2—C3—C17 121.5 (3) C19—C18—H18 119.7
C3—C4—C5 119.6 (3) C17—C18—H18 119.7
C3—C4—H4 120.2 C20—C19—C18 119.3 (4)
C5—C4—H4 120.2 C20—C19—H19 120.4
N1—C5—C4 122.7 (3) C18—C19—H19 120.4
N1—C5—C6 115.6 (3) C21—C20—C19 120.9 (4)
C4—C5—C6 121.6 (3) C21—C20—Br1 120.0 (3)
C7—C6—C10 107.1 (3) C19—C20—Br1 119.1 (3)
C7—C6—C5 125.0 (3) C20—C21—C22 119.8 (4)
C10—C6—C5 127.7 (3) C20—C21—H21 120.1
C7—C6—Fe1 68.7 (2) C22—C21—H21 120.1
C10—C6—Fe1 69.7 (2) C21—C22—C17 120.9 (4)
C5—C6—Fe1 123.7 (2) C21—C22—H22 119.5
C8—C7—C6 108.8 (3) C17—C22—H22 119.5
C8—C7—Fe1 71.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2B···N3i 0.86 2.29 3.050 (5) 148

Symmetry codes: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2041).

References

  1. Alyoubi, A. O. (2000). Spectrochim. Acta Part A, 56, 2397–2404. [DOI] [PubMed]
  2. Bruker (1998). SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (1999). SAINT and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Desai, J. M. & Shah, V. H. (2003). Indian J. Chem. Sect. B, 42, 382–385.
  5. Dombrowski, K. E., Baldwin, W. & Sheats, J. E. (1986). J. Organomet. Chem.302, 281–306.
  6. Murata, T., Shimada, M., Sakakibara, S., Yoshino, T., Masuda, T., Shintani, T., Sato, H., Koriyama, Y., Fukushima, K., Nunami, N., Yamauchi, M., Fuchikami, K., Komura, H., Watanabe, A., Ziegelbauer, K. B., Bacon, K. B. & Lowinger, T. B. (2004). Bioorg. Med. Chem. Lett.14, 4019–4022. [DOI] [PubMed]
  7. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680705489X/bq2041sup1.cif

e-64-0m135-sup1.cif (19.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680705489X/bq2041Isup2.hkl

e-64-0m135-Isup2.hkl (161.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES