Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1966 Feb;45(2):249–255. doi: 10.1172/JCI105337

Pyridine nucleotides in erythrocyte metabolism.

R T Gross, E A Schroeder, B W Gabrio
PMCID: PMC292689  PMID: 4379090

Full text

PDF
249

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Human red cell glycolytic intermediates. J Biol Chem. 1959 Mar;234(3):449–458. [PubMed] [Google Scholar]
  2. BARTLETT G. R., SHAFER A. W. Phosphorylated carbohydrate intermediates of the human erythrocyte during storage in acid citrate dextrose. II. Effect of the addition of inosine late in storage. J Clin Invest. 1961 Jul;40:1185–1193. doi: 10.1172/JCI104348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BISHOP C., RANKINE D. M., TALBOTT J. H. The nucleotides in normal human blood. J Biol Chem. 1959 May;234(5):1233–1237. [PubMed] [Google Scholar]
  4. BROWN E., CLARKE D. L. Simplified method for the determination of reduced triphosphopyridine nucleotide by means of enzymic cycling. J Lab Clin Med. 1963 May;61:889–892. [PubMed] [Google Scholar]
  5. BURCH H. B., LOWRY O. H., VONDIPPE P. THE STABILITY OF TRIPHOSPHOPYRIDINE NUCLEOTIDE AND ITS REDUCED FORM IN RAT LIVER. J Biol Chem. 1963 Aug;238:2838–2842. [PubMed] [Google Scholar]
  6. CHAPMAN R. G., HENNESSEY M. A., WALTERSDORPH A. M., HUENNEKENS F. M., GABRIO B. W. Erythrocyte metabolism. V. Levels of glycolytic enzymes and regulation of glycolysis. J Clin Invest. 1962 Jun;41:1249–1256. doi: 10.1172/JCI104587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CROSBY W. H., MUNN J. I., FURTH F. W. Standardizing a method for clinical hemoglobinometry. U S Armed Forces Med J. 1954 May;5(5):693–703. [PubMed] [Google Scholar]
  8. DONOHUE D. M., FINCH C. A., GABRIO B. W. Erythrocyte preservation. VI. The storage of blood with purine nucleosides. J Clin Invest. 1956 May;35(5):562–567. doi: 10.1172/JCI103309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FORNAINI G., LEONCINI G., LUZZATTO L., SEGNI G. Glucose metabolism in human erythrocytes from normal and fava bean-sensitive subjects. J Clin Invest. 1962 Jul;41:1446–1453. doi: 10.1172/JCI104600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GLOCK G. E., MCLEAN P. The determination of oxidized and reduced diphosphopyridine nucleotide and triphosphopyridine nucleotide in animal tissues. Biochem J. 1955 Nov;61(3):381–388. doi: 10.1042/bj0610381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GROSS R. T., HURWITZ R. E. The pentose phosphate pathway in human erythrocytes; relationship between the age of the subject and enzyme activity. Pediatrics. 1958 Sep;22(3):453–460. [PubMed] [Google Scholar]
  12. GROSS R. T., SCHROEDER E. A., BROUNSTEIN S. A. Energy matabolism in the erythrocytes of permature infants compared to full term newborn infants and adults. Blood. 1963 Jun;21:755–763. [PubMed] [Google Scholar]
  13. HENNESSEY M. A., WALTERSDORPH A. M., HUENNEKENS F. M., GABRIO B. W. Erythrocyte metabolism. VI. Separation of erythrocyte enzymes from hemoglobin. J Clin Invest. 1962 Jun;41:1257–1262. doi: 10.1172/JCI104588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HORECKER B. L., SMYRNIOTIS P. Z. Phosphogluconic acid dehydrogenase from yeast. J Biol Chem. 1951 Nov;193(1):371–381. [PubMed] [Google Scholar]
  15. HUENNEKENS F. M., CAFFREY R. W., BASFORD R. E., GABRIO B. W. Erythrocyte metabolism. IV. Isolation and properties of methemoglobin reductase. J Biol Chem. 1957 Jul;227(1):261–272. [PubMed] [Google Scholar]
  16. Jaffé E. R., Neuman G. The synthesis of pyridine nucleotides in fresh and stored human erythrocytes. Transfusion. 1965 Sep-Oct;5(5):412–420. doi: 10.1111/j.1537-2995.1965.tb02917.x. [DOI] [PubMed] [Google Scholar]
  17. KAPLAN E., HSU K. S. Determination of erythrocyte survival in newborn infants by means of Cr51-labelled erythrocytes. Pediatrics. 1961 Mar;27:354–361. [PubMed] [Google Scholar]
  18. KRAVITZ H., ELEGANT L. D., KAISER E., KAGAN B. M. Methemoglobin values in premature and mature infants and children. AMA J Dis Child. 1956 Jan;91(1):1–5. doi: 10.1001/archpedi.1956.02060020003001. [DOI] [PubMed] [Google Scholar]
  19. LONDON I. M. The metabolism of the erythrocyte. Harvey Lect. 1960;56:151–189. [PubMed] [Google Scholar]
  20. LOWRY O. H., PASSONNEAU J. V., ROCK M. K. The stability of pyridine nucleotides. J Biol Chem. 1961 Oct;236:2756–2759. [PubMed] [Google Scholar]
  21. LOWRY O. H., PASSONNEAU J. V., SCHULZ D. W., ROCK M. K. The measurement of pyridine nucleotides by enzymatic cycling. J Biol Chem. 1961 Oct;236:2746–2755. [PubMed] [Google Scholar]
  22. MARKS P. A., SZEINBERG A., BANKS J. Erythrocyte glucose 6-phosphate dehydrogenase of normal and mutant human subjects: properties of the purified enzymes. J Biol Chem. 1961 Jan;236:10–17. [PubMed] [Google Scholar]
  23. MILLS G. C., SUMMERS L. B. The metabolism of nucleotides and other phosphate esters in erythrocytes during in vitro incubation at 37 degrees. Arch Biochem Biophys. 1959 Sep;84:7–14. doi: 10.1016/0003-9861(59)90548-x. [DOI] [PubMed] [Google Scholar]
  24. MOLLISON P. L., ROBINSON M. A. Observations on the effects of purine nucleosides on red-cell preservation. Br J Haematol. 1959 Oct;5:331–343. doi: 10.1111/j.1365-2141.1959.tb04043.x. [DOI] [PubMed] [Google Scholar]
  25. MURPHY J. R. Erythrocyte metabolism. II. Glucose metabolism and pathways. J Lab Clin Med. 1960 Feb;55:286–302. [PubMed] [Google Scholar]
  26. OSKI F. A., DIAMOND L. K. ERYTHROCYTE PYRUVATE KINASE DEFICIENCY RESULTING IN CONGENITAL NONSPHEROCYTIC HEMOLYTIC ANEMIA. N Engl J Med. 1963 Oct 10;269:763–770. doi: 10.1056/NEJM196310102691501. [DOI] [PubMed] [Google Scholar]
  27. ROSS J. D. Deficient activity of DPNH-dependent methemoglobin diaphorase in cord blood erythrocytes. Blood. 1963 Jan;21:51–62. [PubMed] [Google Scholar]
  28. SCHRIER S. L., KELLERMEYER R. W., ALVING A. S. Coenzyme studies in primaquine-sensitive erythrocytes. Proc Soc Exp Biol Med. 1958 Nov;99(2):354–356. doi: 10.3181/00379727-99-24348. [DOI] [PubMed] [Google Scholar]
  29. SHAFER A. W., BARTLETT G. R. Phosphorylated carbohydrate intermediates of the human erythrocyte during storage in acid citrate dextrose. III. Effect of incubation at 37 degrees C. with inosine, inosine plus adenine, and adenosine after storage for 6, 10, 14 and 18 weeks. J Clin Invest. 1962 Apr;41:690–695. doi: 10.1172/JCI104526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. SILBER R., GABRIO B. W., HUENNEKENS F. M. Studies on normal and leukemic leukocytes. III. Pyridine nucleotides. J Clin Invest. 1962 Feb;41:230–234. doi: 10.1172/JCI104474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. SIMON E. R., CHAPMAN R. G., FINCH C. A. Adenine in red cell preservation. J Clin Invest. 1962 Feb;41:351–359. doi: 10.1172/JCI104489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. SZEINBERG A., MARKS P. A. Substances stimulating glucose catabolism by the oxidative reactions of the pentose phosphate pathway in human erythrocytes. J Clin Invest. 1961 Jun;40:914–924. doi: 10.1172/JCI104330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. VEST M. F., GRIEDER H. R. Erythrocyte survival in the newborn infant, as measured by chromium 51 and its relation to the postnatal serum bilirubin level. J Pediatr. 1961 Aug;59:194–199. doi: 10.1016/s0022-3476(61)80079-6. [DOI] [PubMed] [Google Scholar]
  34. ZINKHAM W. H. An in-vitro abnormality of glutathione metabolism in erythrocytes from normal newborns: mechanism and clinical significance. Pediatrics. 1959 Jan;23(1 Pt 1):18–32. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES