Abstract
The effect of some cations on the active potassium transport system of the human red blood cell has been investigated. At low extracellular potassium concentrations, extracellular sodium competitively inhibits the active potassium influx at all sodium concentrations investigated, and tetraethylammonium behaves in a fashion similar to that of sodium. At low extracellular concentrations of potassium, ammonium at low concentrations at first stimulates the active potassium influx, but at higher concentrations inhibits it. Tetramethylammonium at most slightly stimulates the active potassium influx, and calcium is without effect. The behavior is consistent with a model in which potassium is required at more than one site before transport occurs, and the sites are indistinguishable as far as their behavior toward the ions investigated is concerned. The affinity of the alkali metal cations for the sites appears to be explicable in terms of their physical characteristics.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARMSTRONG C. M., BINSTOCK L. ANOMALOUS RECTIFICATION IN THE SQUID GIANT AXON INJECTED WITH TETRAETHYLAMMONIUM CHLORIDE. J Gen Physiol. 1965 May;48:859–872. doi: 10.1085/jgp.48.5.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Askari A. Uptake of some quaternary ammonium ions by human erythrocytes. J Gen Physiol. 1966 Jul;49(6):1147–1160. doi: 10.1085/jgp.0491147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KAHN J. B., Jr The entry of rubidium into human erythrocytes. J Pharmacol Exp Ther. 1962 May;136:197–204. [PubMed] [Google Scholar]
- LOVE W. D., BURCH G. E. A comparison of potassium 42, rubidium 86, and cesium 134 as tracers of potassium in the study of cation metabolism of human erythrocytes in vitro. J Lab Clin Med. 1953 Mar;41(3):351–362. [PubMed] [Google Scholar]
- McConaghey P. D., Maizels M. Cation exchanges of lactose-treated human red cells. J Physiol. 1962 Aug;162(3):485–509. doi: 10.1113/jphysiol.1962.sp006946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakajima S. Analysis of K inactivation and TEA action in the supramedullary cells of puffer. J Gen Physiol. 1966 Mar;49(4):629–640. doi: 10.1085/jgp.49.4.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- POST R. L., JOLLY P. C. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim Biophys Acta. 1957 Jul;25(1):118–128. doi: 10.1016/0006-3002(57)90426-2. [DOI] [PubMed] [Google Scholar]
- POST R. L., MERRITT C. R., KINSOLVING C. R., ALBRIGHT C. D. Membrane adenosine triphosphatase as a participant in the active transport of sodium and potassium in the human erythrocyte. J Biol Chem. 1960 Jun;235:1796–1802. [PubMed] [Google Scholar]
- RUMMEL W., SEIFEN E., BALDAUF J. Influence of calcium and ouabain upon the potassium influx in human erythrocytes. Biochem Pharmacol. 1963 Jun;12:557–563. doi: 10.1016/0006-2952(63)90131-x. [DOI] [PubMed] [Google Scholar]
- SOLOMON A. K. The permeability of the human erythrocyte to sodium and potassium. J Gen Physiol. 1952 May;36(1):57–110. doi: 10.1085/jgp.36.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs J. R., Welt L. G. The concentration dependence of active potassium transport in the human red blood cell. J Clin Invest. 1967 Jan;46(1):65–76. doi: 10.1172/JCI105512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whittam R., Ager M. E. Vectorial aspects of adenosine-triphosphatase activity in erythrocyte membranes. Biochem J. 1964 Nov;93(2):337–348. doi: 10.1042/bj0930337. [DOI] [PMC free article] [PubMed] [Google Scholar]