Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1967 Oct;46(10):1657–1668. doi: 10.1172/JCI105657

Ventricular Arrhythmias and K+ Transfer during Myocardial Ischemia and Intervention with Procaine Amide, Insulin, or Glucose Solution*

Timothy J Regan 1,2,, Maureen A Harman 1,2, Patrick H Lehan 1,2, William M Burke 1,2, Henry A Oldewurtel 1,2
PMCID: PMC292914  PMID: 6061741

Abstract

To assess the relation of ventricular arrhythmias to myocardial K+ movement during ischemia, we placed an electrode catheter in the left anterior descending coronary artery for thrombus production in intact anesthetized dogs. 85Kr injections distal to the thrombus permitted serial coronary blood flow measurements. Animals of Group I with a moderate flow reduction exhibited no arrhythmia or myocardial egress of K+. In Group II, marked flow reduction was accompanied by an injury potential and loss of K+ from the ischemic site, before and during ventricular tachycardia.

Therapeutic interventions were performed in animals having the same degree of ischemia as Group II. Systemic procaine amide in Group III interrupted the tachycardia and egress of K+, despite persistent ischemia. Group IV did not respond to intracoronary insulin with K+ uptake, as did normal dogs, and progressed to fibrillation. During the production of hyperglycemia in Group V, myocardial loss of K+ ceased with maintenance of sinus rhythm. Hemodynamic factors did not appear to have a major role in the genesis of the arrhythmia.

Since intracoronary infusion of K+ in normal dogs similarly altered repolarization and produced fibrillation, it would appear that during ischemia egress of K+ before development of the arrhythmia indicates a major role of the ion in pathogenesis. This view is supported by the myocardial loss of K+ and arrhythmia induced in normal dogs by strophanthidin and by the fact that pharmacologic regulation of K+ loss is associated with correction of the arrhythmia, despite persistence of low blood flow.

Full text

PDF
1657

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROWN E. B., Jr, MOWLEM A. Potassium loss from the heart during the immediate posthypercapnic period. Am J Physiol. 1960 May;198:962–964. doi: 10.1152/ajplegacy.1960.198.5.962. [DOI] [PubMed] [Google Scholar]
  2. CHERBAKOFF A., TOYAMA S., HAMILTON W. F. Relation between coronary sinus plasma potassium and cardiac arrhythmia. Circ Res. 1957 Sep;5(5):517–521. doi: 10.1161/01.res.5.5.517. [DOI] [PubMed] [Google Scholar]
  3. CONN H. L., Jr Effects of digitalis and hypoxia on potassium transfer and distribution in the dog heart. Am J Physiol. 1956 Mar;184(3):548–552. doi: 10.1152/ajplegacy.1956.184.3.548. [DOI] [PubMed] [Google Scholar]
  4. CONN H. L., Jr, ROBERTSON J. S. Kinetics of potassium transfer in the left ventricle of the intact dog. Am J Physiol. 1955 May;181(2):319–324. doi: 10.1152/ajplegacy.1955.181.2.319. [DOI] [PubMed] [Google Scholar]
  5. DOWNING S. E. EFFECTS OF ANGIOTENSIN II AND NOREPINEPHRINE ON VENTRICULAR PERFORMANCE DURING OLIGEMIC SHOCK. Yale J Biol Med. 1964 Jun;36:407–420. [PMC free article] [PubMed] [Google Scholar]
  6. FRIESINGER G. C., SCHAEFER J., GAERTNER R. A., ROSS R. S. CORONARY SINUS DRAINAGE AND MEASUREMENT OF LEFT CORONARY ARTERY FLOW IN THE DOG. Am J Physiol. 1964 Jan;206:57–62. doi: 10.1152/ajplegacy.1964.206.1.57. [DOI] [PubMed] [Google Scholar]
  7. HANO J. E., HARRIS A. S. Effects of histamine and potassium release agents on ventricular rhythms before and after coronary occlusion. Am Heart J. 1963 Mar;65:368–376. doi: 10.1016/0002-8703(63)90012-7. [DOI] [PubMed] [Google Scholar]
  8. HARRIS A. S., BISTENI A., RUSSELL R. A., BRIGHAM J. C., FIRESTONE J. E. Excitatory factors in ventricular tachycardia resulting from myocardial ischemia; potassium a major excitant. Science. 1954 Feb 12;119(3085):200–203. doi: 10.1126/science.119.3085.200. [DOI] [PubMed] [Google Scholar]
  9. HERD J. A., HOLLENBERG M., THORBURN G. D., KOPALD H. H., BARGER A. C. Myocardial blood flow determined with krypton 85 in unanesthetized dogs. Am J Physiol. 1962 Jul;203:122–124. doi: 10.1152/ajplegacy.1962.203.1.122. [DOI] [PubMed] [Google Scholar]
  10. HILL J. B., KESSLER G. An automated determination of glucose utilizing a glucose oxidase-peroxidase system. J Lab Clin Med. 1961 Jun;57:970–980. [PubMed] [Google Scholar]
  11. Harman M. A., Markov A., Lehan P. H., Oldewurtel H. A., Regan T. J. Coronary blood flow measurements in the presence of arterial obstruction. Circ Res. 1966 Sep;19(3):632–637. doi: 10.1161/01.res.19.3.632. [DOI] [PubMed] [Google Scholar]
  12. JOHANSSON B., LINDER E., SEEMAN T. COLLATERAL BLOOD FLOW IN THE MYOCARDIUM OF DOGS MEASURED WITH KRYPTON. Acta Physiol Scand. 1964 Nov;62:263–270. doi: 10.1111/j.1748-1716.1964.tb03973.x. [DOI] [PubMed] [Google Scholar]
  13. NAHAS G. G. A simplified lucite cuvette for the spectrophotometric measurement of hemoglobin and oxyhemoglobin. J Appl Physiol. 1958 Jul;13(1):147–152. doi: 10.1152/jappl.1958.13.1.147. [DOI] [PubMed] [Google Scholar]
  14. REEVES T. J., HEFNER L. L., JONES W. B., COGHLAN C., PRIETO G., CARROLL J. The hemodynamic determinants of the rate of change in pressure in the left ventricle during isometric contraction. Am Heart J. 1960 Nov;60:745–761. doi: 10.1016/0002-8703(60)90358-6. [DOI] [PubMed] [Google Scholar]
  15. REGAN T. J., FRANK M. J., LEHAN P. H., HELLEMS H. K. RELATIONSHIP OF INSULIN AND STROPHANTHIDIN TO MYOCARDIAL METABOLISM AND FUNCTION. Am J Physiol. 1963 Oct;205:790–794. doi: 10.1152/ajplegacy.1963.205.4.790. [DOI] [PubMed] [Google Scholar]
  16. ROSS R. S., UEDA K., LICHTLEN P. R., REES J. R. MEASUREMENT OF MYOCARDIAL BLOOD FLOW IN ANIMALS AND MAN BY SELECTIVE INJECTION OF RADIOACTIVE INERT GAS INTO THE CORONARY ARTERIES. Circ Res. 1964 Jul;15:28–41. doi: 10.1161/01.res.15.1.28. [DOI] [PubMed] [Google Scholar]
  17. RUSSELL R. A., CRAFOORD J., HARRIS A. S. Changes in myocardial composition after coronary artery ligation. Am J Physiol. 1961 May;200:995–998. doi: 10.1152/ajplegacy.1961.200.5.995. [DOI] [PubMed] [Google Scholar]
  18. Regan T. J., Moschos C. B., Lehan P. H., Oldewurtel H. A., Hellems H. K. Lipid and carbohydrate metabolism of myocardium during the biphasic inotropic response to epinephrine. Circ Res. 1966 Aug;19(2):307–316. doi: 10.1161/01.res.19.2.307. [DOI] [PubMed] [Google Scholar]
  19. SALAZAR A. E. Experimental myocardial infarction. Induction of coronary thrombosis in the intact closed-chest dog. Circ Res. 1961 Nov;9:1351–1356. doi: 10.1161/01.res.9.6.1351. [DOI] [PubMed] [Google Scholar]
  20. SODI-PALLARES D., BISTENI A., MEDRANO G. A., TESTELLI M. R., DE MICHELI A. The polarizing treatment of acute myocardial infarction. Possibility of its use in other cardiovascular conditions. Dis Chest. 1963 Apr;43:424–432. doi: 10.1378/chest.43.4.424. [DOI] [PubMed] [Google Scholar]
  21. SOLOFF L. A., DE LOS SANTOS G. A., OPPENHEIMER M. J. Electrocardiographic changes produced by potassium and other ions injected into the coronary arteries of intact dogs. Circ Res. 1960 Mar;8:479–484. doi: 10.1161/01.res.8.2.479. [DOI] [PubMed] [Google Scholar]
  22. WALLACE A. G., SKINNER N. S., Jr, MITCHELL J. H. Hemodynamic determinants of the maximal rate of rise of left ventricular pressure. Am J Physiol. 1963 Jul;205:30–36. doi: 10.1152/ajplegacy.1963.205.1.30. [DOI] [PubMed] [Google Scholar]
  23. WEXLER J., PATT H. H. Evidence that serum potassium is not the etiological agent in ventricular fibrillation following coronary artery occlusion. Am Heart J. 1960 Oct;60:618–623. doi: 10.1016/0002-8703(60)90439-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES