Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Jul;92(1):38–53. doi: 10.1172/JCI116576

Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice.

J Quddus 1, K J Johnson 1, J Gavalchin 1, E P Amento 1, C E Chrisp 1, R L Yung 1, B C Richardson 1
PMCID: PMC293525  PMID: 7686923

Abstract

Human antigen-specific CD4+ T cells become autoreactive after treatment with various DNA methylation inhibitors, including 5-azacytidine, procainamide, and hydralazine. This suggests a mechanism that could contribute to the development of some forms of autoimmunity. In this report we have asked whether T cells treated with DNA methylation inhibitors can induce autoimmunity. Murine CD4+ T cells were treated with 5-azacytidine or procainamide and were shown to respond to syngeneic antigen-presenting cells, similar to CD4+ human T cell clones treated with these drugs. Functional characterization demonstrated that cells treated with either drug spontaneously lysed syngeneic macrophages and secreted IL-4, IL-6, and IFN-gamma. Adoptive transfer of 5-azacytidine- or procainamide-treated cells into unirradiated syngeneic recipients induced an immune complex glomerulonephritis and IgG anti-DNA and antihistone antibodies. These experiments demonstrate that T cells treated with either of two distinct DNA methyltransferase inhibitors are sufficient to induce a lupus-like disease. It is possible that the lysis of macrophages, together with the release of cytokines promoting B cell differentiation, contributes to the autoantibody production and immune complex deposition. These results suggest that environmental agents that inhibit DNA methylation could interact with T cells in vivo to produce a lupus-like illness, a mechanism that could have relevance to drug-induced and idiopathic lupus.

Full text

PDF
38

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abehsira-Amar O., Gibert M., Joliy M., Thèze J., Jankovic D. L. IL-4 plays a dominant role in the differential development of Tho into Th1 and Th2 cells. J Immunol. 1992 Jun 15;148(12):3820–3829. [PubMed] [Google Scholar]
  2. Austin H. A., 3rd, Muenz L. R., Joyce K. M., Antonovych T. A., Kullick M. E., Klippel J. H., Decker J. L., Balow J. E. Prognostic factors in lupus nephritis. Contribution of renal histologic data. Am J Med. 1983 Sep;75(3):382–391. doi: 10.1016/0002-9343(83)90338-8. [DOI] [PubMed] [Google Scholar]
  3. Baldwin D. S., Gluck M. C., Lowenstein J., Gallo G. R. Lupus nephritis. Clinical course as related to morphologic forms and their transitions. Am J Med. 1977 Jan;62(1):12–30. doi: 10.1016/0002-9343(77)90345-x. [DOI] [PubMed] [Google Scholar]
  4. Chan K. K., Giannini D. D., Staroscik J. A., Sadee W. 5-Azacytidine hydrolysis kinetics measured by high-pressure liquid chromatography and 13C-NMR spectroscopy. J Pharm Sci. 1979 Jul;68(7):807–812. doi: 10.1002/jps.2600680705. [DOI] [PubMed] [Google Scholar]
  5. Cihák A. Biological effects of 5-azacytidine in eukaryotes. Oncology. 1974;30(5):405–422. doi: 10.1159/000224981. [DOI] [PubMed] [Google Scholar]
  6. Cornacchia E., Golbus J., Maybaum J., Strahler J., Hanash S., Richardson B. Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J Immunol. 1988 Apr 1;140(7):2197–2200. [PubMed] [Google Scholar]
  7. Davignon D., Martz E., Reynolds T., Kürzinger K., Springer T. A. Monoclonal antibody to a novel lymphocyte function-associated antigen (LFA-1): mechanism of blockade of T lymphocyte-mediated killing and effects on other T and B lymphocyte functions. J Immunol. 1981 Aug;127(2):590–595. [PubMed] [Google Scholar]
  8. Erb P., Grogg D., Troxler M., Kennedy M., Fluri M. CD4+ T cell-mediated killing of MHC class II-positive antigen-presenting cells. I. Characterization of target cell recognition by in vivo or in vitro activated CD4+ killer T cells. J Immunol. 1990 Feb 1;144(3):790–795. [PubMed] [Google Scholar]
  9. Flescher E., Fossum D., Ballester A., Maizel A., Sharma S., Talal N. Characterization of B cell growth in systemic lupus erythematosus. Effects of recombinant 12-kDa B cell growth factor, interleukin 4 and transforming growth factor-beta. Eur J Immunol. 1990 Nov;20(11):2425–2430. doi: 10.1002/eji.1830201110. [DOI] [PubMed] [Google Scholar]
  10. Gallily R., Feldman M. The role of macrophages in the induction of antibody in x-irradiated animals. Immunology. 1967 Feb;12(2):197–206. [PMC free article] [PubMed] [Google Scholar]
  11. Gavalchin J., Nicklas J. A., Eastcott J. W., Madaio M. P., Stollar B. D., Schwartz R. S., Datta S. K. Lupus prone (SWR x NZB)F1 mice produce potentially nephritogenic autoantibodies inherited from the normal SWR parent. J Immunol. 1985 Feb;134(2):885–894. [PubMed] [Google Scholar]
  12. Glazer R. I., Hartman K. D. The comparative effects of 5-azacytidine and dihydro-5-azacytidine on 4 S and 5 S nuclear RNA. Mol Pharmacol. 1980 Mar;17(2):250–255. [PubMed] [Google Scholar]
  13. Gleichmann E., Van Elven E. H., Van der Veen J. P. A systemic lupus erythematosus (SLE)-like disease in mice induced by abnormal T-B cell cooperation. Preferential formation of autoantibodies characteristic of SLE. Eur J Immunol. 1982 Feb;12(2):152–159. doi: 10.1002/eji.1830120210. [DOI] [PubMed] [Google Scholar]
  14. Glover A. B., Leyland-Jones B. Biochemistry of azacitidine: a review. Cancer Treat Rep. 1987 Oct;71(10):959–964. [PubMed] [Google Scholar]
  15. Golbus J., Palella T. D., Richardson B. C. Quantitative changes in T cell DNA methylation occur during differentiation and ageing. Eur J Immunol. 1990 Aug;20(8):1869–1872. doi: 10.1002/eji.1830200836. [DOI] [PubMed] [Google Scholar]
  16. Golbus J., Salata M., Greenwood J., Hudson J., Richardson B. C. Increased immunoglobulin response to gamma-interferon by lymphocytes from patients with systemic lupus erythematosus. Clin Immunol Immunopathol. 1988 Jan;46(1):129–140. doi: 10.1016/0090-1229(88)90013-x. [DOI] [PubMed] [Google Scholar]
  17. Harmon C. E., Portanova J. P. Drug-induced lupus: clinical and serological studies. Clin Rheum Dis. 1982 Apr;8(1):121–135. [PubMed] [Google Scholar]
  18. Holoshitz J., Koning F., Coligan J. E., De Bruyn J., Strober S. Isolation of CD4- CD8- mycobacteria-reactive T lymphocyte clones from rheumatoid arthritis synovial fluid. Nature. 1989 May 18;339(6221):226–229. doi: 10.1038/339226a0. [DOI] [PubMed] [Google Scholar]
  19. Howie J. B., Helyer B. J. The immunology and pathology of NZB mice. Adv Immunol. 1968;9:215–266. doi: 10.1016/s0065-2776(08)60444-7. [DOI] [PubMed] [Google Scholar]
  20. Jacob C. O., van der Meide P. H., McDevitt H. O. In vivo treatment of (NZB X NZW)F1 lupus-like nephritis with monoclonal antibody to gamma interferon. J Exp Med. 1987 Sep 1;166(3):798–803. doi: 10.1084/jem.166.3.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ju S. T., DeKruyff R. H., Dorf M. E. Inducer T-cell-mediated killing of antigen-presenting cells. Cell Immunol. 1986 Sep;101(2):613–624. doi: 10.1016/0008-8749(86)90171-1. [DOI] [PubMed] [Google Scholar]
  22. Kappler J. W., Roehm N., Marrack P. T cell tolerance by clonal elimination in the thymus. Cell. 1987 Apr 24;49(2):273–280. doi: 10.1016/0092-8674(87)90568-x. [DOI] [PubMed] [Google Scholar]
  23. Kaufmann S. H., Hug E., Väth U., De Libero G. Specific lysis of Listeria monocytogenes-infected macrophages by class II-restricted L3T4+ T cells. Eur J Immunol. 1987 Feb;17(2):237–246. doi: 10.1002/eji.1830170214. [DOI] [PubMed] [Google Scholar]
  24. Kaye J., Porcelli S., Tite J., Jones B., Janeway C. A., Jr Both a monoclonal antibody and antisera specific for determinants unique to individual cloned helper T cell lines can substitute for antigen and antigen-presenting cells in the activation of T cells. J Exp Med. 1983 Sep 1;158(3):836–856. doi: 10.1084/jem.158.3.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lancki D. W., Hsieh C. S., Fitch F. W. Mechanisms of lysis by cytotoxic T lymphocyte clones. Lytic activity and gene expression in cloned antigen-specific CD4+ and CD8+ T lymphocytes. J Immunol. 1991 May 1;146(9):3242–3249. [PubMed] [Google Scholar]
  26. Lee S. L., CHase P. H. Drug-induced systemic lupus erythematosus: a critical review. Semin Arthritis Rheum. 1975 Aug;5(1):83–103. doi: 10.1016/0049-0172(75)90024-4. [DOI] [PubMed] [Google Scholar]
  27. Lieberman M. W., Beach L. R., Palmiter R. D. Ultraviolet radiation-induced metallothionein-I gene activation is associated with extensive DNA demethylation. Cell. 1983 Nov;35(1):207–214. doi: 10.1016/0092-8674(83)90223-4. [DOI] [PubMed] [Google Scholar]
  28. Linker-Israeli M., Quismorio F. P., Jr, Horwitz D. A. CD8+ lymphocytes from patients with systemic lupus erythematosus sustain, rather than suppress, spontaneous polyclonal IgG production and synergize with CD4+ cells to support autoantibody synthesis. Arthritis Rheum. 1990 Aug;33(8):1216–1225. doi: 10.1002/art.1780330823. [DOI] [PubMed] [Google Scholar]
  29. Markmann J., Lo D., Naji A., Palmiter R. D., Brinster R. L., Heber-Katz E. Antigen presenting function of class II MHC expressing pancreatic beta cells. Nature. 1988 Dec 1;336(6198):476–479. doi: 10.1038/336476a0. [DOI] [PubMed] [Google Scholar]
  30. Mosmann T. R., Coffman R. L. Heterogeneity of cytokine secretion patterns and functions of helper T cells. Adv Immunol. 1989;46:111–147. doi: 10.1016/s0065-2776(08)60652-5. [DOI] [PubMed] [Google Scholar]
  31. Nuñez G., Hockenbery D., McDonnell T. J., Sorensen C. M., Korsmeyer S. J. Bcl-2 maintains B cell memory. Nature. 1991 Sep 5;353(6339):71–73. doi: 10.1038/353071a0. [DOI] [PubMed] [Google Scholar]
  32. Ottenhoff T. H., Ab B. K., Van Embden J. D., Thole J. E., Kiessling R. The recombinant 65-kD heat shock protein of Mycobacterium bovis Bacillus Calmette-Guerin/M. tuberculosis is a target molecule for CD4+ cytotoxic T lymphocytes that lyse human monocytes. J Exp Med. 1988 Nov 1;168(5):1947–1952. doi: 10.1084/jem.168.5.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pezzella F., Tse A. G., Cordell J. L., Pulford K. A., Gatter K. C., Mason D. Y. Expression of the bcl-2 oncogene protein is not specific for the 14;18 chromosomal translocation. Am J Pathol. 1990 Aug;137(2):225–232. [PMC free article] [PubMed] [Google Scholar]
  34. Rabin H., Hopkins R. F., 3rd, Ruscetti F. W., Neubauer R. H., Brown R. L., Kawakami T. G. Spontaneous release of a factor with properties of T cell growth factor from a continuous line of primate tumor T cells. J Immunol. 1981 Nov;127(5):1852–1856. [PubMed] [Google Scholar]
  35. Richardson B. C., Liebling M. R., Hudson J. L. CD4+ cells treated with DNA methylation inhibitors induce autologous B cell differentiation. Clin Immunol Immunopathol. 1990 Jun;55(3):368–381. doi: 10.1016/0090-1229(90)90125-a. [DOI] [PubMed] [Google Scholar]
  36. Richardson B. C., Strahler J. R., Pivirotto T. S., Quddus J., Bayliss G. E., Gross L. A., O'Rourke K. S., Powers D., Hanash S. M., Johnson M. A. Phenotypic and functional similarities between 5-azacytidine-treated T cells and a T cell subset in patients with active systemic lupus erythematosus. Arthritis Rheum. 1992 Jun;35(6):647–662. doi: 10.1002/art.1780350608. [DOI] [PubMed] [Google Scholar]
  37. Richardson B., Cornacchia E., Golbus J., Maybaum J., Strahler J., Hanash S. N-acetylprocainamide is a less potent inducer of T cell autoreactivity than procainamide. Arthritis Rheum. 1988 Aug;31(8):995–999. doi: 10.1002/art.1780310809. [DOI] [PubMed] [Google Scholar]
  38. Richardson B. Effect of an inhibitor of DNA methylation on T cells. II. 5-Azacytidine induces self-reactivity in antigen-specific T4+ cells. Hum Immunol. 1986 Dec;17(4):456–470. doi: 10.1016/0198-8859(86)90304-6. [DOI] [PubMed] [Google Scholar]
  39. Richardson B., Kahn L., Lovett E. J., Hudson J. Effect of an inhibitor of DNA methylation on T cells. I. 5-Azacytidine induces T4 expression on T8+ T cells. J Immunol. 1986 Jul 1;137(1):35–39. [PubMed] [Google Scholar]
  40. Richardson B., Scheinbart L., Strahler J., Gross L., Hanash S., Johnson M. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 1990 Nov;33(11):1665–1673. doi: 10.1002/art.1780331109. [DOI] [PubMed] [Google Scholar]
  41. Rodriguez M., Quddus J. Effect of cyclosporin A, silica quartz dust, and protease inhibitors on virus-induced demyelination. J Neuroimmunol. 1986 Dec;13(2):159–174. doi: 10.1016/0165-5728(86)90062-7. [DOI] [PubMed] [Google Scholar]
  42. Rolink A. G., Gleichmann E. Allosuppressor- and allohelper-T cells in acute and chronic graft-vs.-host (GVH) disease. III. Different Lyt subsets of donor T cells induce different pathological syndromes. J Exp Med. 1983 Aug 1;158(2):546–558. doi: 10.1084/jem.158.2.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sanchez-Madrid F., Simon P., Thompson S., Springer T. A. Mapping of antigenic and functional epitopes on the alpha- and beta-subunits of two related mouse glycoproteins involved in cell interactions, LFA-1 and Mac-1. J Exp Med. 1983 Aug 1;158(2):586–602. doi: 10.1084/jem.158.2.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Scheinbart L. S., Johnson M. A., Gross L. A., Edelstein S. R., Richardson B. C. Procainamide inhibits DNA methyltransferase in a human T cell line. J Rheumatol. 1991 Apr;18(4):530–534. [PubMed] [Google Scholar]
  45. Schwartz R. H. Acquisition of immunologic self-tolerance. Cell. 1989 Jun 30;57(7):1073–1081. doi: 10.1016/0092-8674(89)90044-5. [DOI] [PubMed] [Google Scholar]
  46. Street N. E., Schumacher J. H., Fong T. A., Bass H., Fiorentino D. F., Leverah J. A., Mosmann T. R. Heterogeneity of mouse helper T cells. Evidence from bulk cultures and limiting dilution cloning for precursors of Th1 and Th2 cells. J Immunol. 1990 Mar 1;144(5):1629–1639. [PubMed] [Google Scholar]
  47. T-cell repertoire. Immunol Rev. 1988 Jan;101:1–215. [PubMed] [Google Scholar]
  48. Tary-Lehmann M., Rolink A. G., Lehmann P. V., Nagy Z. A., Hurtenbach U. Induction of graft versus host-associated immunodeficiency by CD4+ T cell clones. J Immunol. 1990 Oct 1;145(7):2092–2098. [PubMed] [Google Scholar]
  49. Theofilopoulos A. N., Dixon F. J. Murine models of systemic lupus erythematosus. Adv Immunol. 1985;37:269–390. doi: 10.1016/s0065-2776(08)60342-9. [DOI] [PubMed] [Google Scholar]
  50. Theofilopoulos A. N., Dixon F. J. Murine models of systemic lupus erythematosus. Adv Immunol. 1985;37:269–390. doi: 10.1016/s0065-2776(08)60342-9. [DOI] [PubMed] [Google Scholar]
  51. Uetrecht J. P., Freeman R. W., Woosley R. L. The implications of procainamide metabolism to its induction of lupus. Arthritis Rheum. 1981 Aug;24(8):994–1003. doi: 10.1002/art.1780240803. [DOI] [PubMed] [Google Scholar]
  52. Unanue E. R. The regulatory role of macrophages in antigenic stimulation. Adv Immunol. 1972;15:95–165. doi: 10.1016/s0065-2776(08)60684-7. [DOI] [PubMed] [Google Scholar]
  53. Weksler M. E., Moody C. E., Jr, Kozak R. W. The autologous mixed-lymphocyte reaction. Adv Immunol. 1981;31:271–312. doi: 10.1016/s0065-2776(08)60923-2. [DOI] [PubMed] [Google Scholar]
  54. Yoshida H., Yoshida M., Merino R., Shibata T., Izui S. 5-Azacytidine inhibits the lpr gene-induced lymphadenopathy and acceleration of lupus-like syndrome in MRL/MpJ-lpr/lpr mice. Eur J Immunol. 1990 Sep;20(9):1989–1993. doi: 10.1002/eji.1830200917. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES