Abstract
A previous study suggested that muscles from hypocalorically fed rats were limited in their ability to rephosphorylate ADP. During muscle contraction hydrolysis of ATP results in an increase in phosphorus, free ADP, delta GATP, and a reduction in phosphocreatine levels that is reversed during rest by rephosphorylation of ADP to ATP and the resynthesis of phosphocreatine by ATP. We therefore hypothesized that these changes would be restored more slowly during postcontraction rest in hypocalorically fed rats as compared with controls. We compared controls fed ad lib to 2-d fasted and hypocalorically fed rats, losing 20% of their weight. We also compared hypocalorically fed rats that had been refed ad lib for 7 d with age-matched controls fed ad lib. The results showed that ATP, muscle pH, and total muscle creatine levels were not different in all groups. The raised phosphorus and delta GATP levels and lower phosphocreatine/phosphorus ratio at the end of contraction changed more slowly during rest in the hypocaloric rats. These abnormalities were partially corrected by refeeding. The data taken as a whole support the concept of impaired rephosphorylation of ADP in malnourished muscle that is not completely restored by refeeding in stimulated muscle.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Argov Z., Bank W. J., Maris J., Peterson P., Chance B. Bioenergetic heterogeneity of human mitochondrial myopathies: phosphorus magnetic resonance spectroscopy study. Neurology. 1987 Feb;37(2):257–262. doi: 10.1212/wnl.37.2.257. [DOI] [PubMed] [Google Scholar]
- Argov Z., Renshaw P. F., Boden B., Winokur A., Bank W. J. Effects of thyroid hormones on skeletal muscle bioenergetics. In vivo phosphorus-31 magnetic resonance spectroscopy study of humans and rats. J Clin Invest. 1988 Jun;81(6):1695–1701. doi: 10.1172/JCI113508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barbiroli B., Funicello R., Iotti S., Montagna P., Ferlini A., Zaniol P. 31P-NMR spectroscopy of skeletal muscle in Becker dystrophy and DMD/BMD carriers. Altered rate of phosphate transport. J Neurol Sci. 1992 Jun;109(2):188–195. doi: 10.1016/0022-510x(92)90167-j. [DOI] [PubMed] [Google Scholar]
- Berger M., Hagg S. A., Goodman M. N., Ruderman N. B. Glucose metabolism in perfused skeletal muscle. Effects of starvation, diabetes, fatty acids, acetoacetate, insulin and exercise on glucose uptake and disposition. Biochem J. 1976 Aug 15;158(2):191–202. doi: 10.1042/bj1580191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chance B., Leigh J. S., Jr, Clark B. J., Maris J., Kent J., Nioka S., Smith D. Control of oxidative metabolism and oxygen delivery in human skeletal muscle: a steady-state analysis of the work/energy cost transfer function. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8384–8388. doi: 10.1073/pnas.82.24.8384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chance B., Leigh J. S., Jr, Kent J., McCully K. Metabolic control principles and 31P NMR. Fed Proc. 1986 Dec;45(13):2915–2920. [PubMed] [Google Scholar]
- Church J. M., Choong B. Y., Hill G. L. Abnormal muscle fructose bisphosphatase activity in malnourished cancer patients. Cancer. 1986 Dec 1;58(11):2448–2452. doi: 10.1002/1097-0142(19861201)58:11<2448::aid-cncr2820581116>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
- Goodman M. N., Larsen P. R., Kaplan M. M., Aoki T. T., Young V. R., Ruderman N. B. Starvation in the rat. II. Effect of age and obesity on protein sparing and fuel metabolism. Am J Physiol. 1980 Oct;239(4):E277–E286. doi: 10.1152/ajpendo.1980.239.4.E277. [DOI] [PubMed] [Google Scholar]
- Gupta R. K., Gupta P., Yushok W. D., Rose Z. B. Measurement of the dissociation constant of MgATP at physiological nucleotide levels by a combination of 31P NMR and optical absorbance spectroscopy. Biochem Biophys Res Commun. 1983 Nov 30;117(1):210–216. doi: 10.1016/0006-291x(83)91562-0. [DOI] [PubMed] [Google Scholar]
- Gupta R. K., Moore R. D. 31P NMR studies of intracellular free Mg2+ in intact frog skeletal muscle. J Biol Chem. 1980 May 10;255(9):3987–3993. [PubMed] [Google Scholar]
- Lawson J. W., Veech R. L. Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions. J Biol Chem. 1979 Jul 25;254(14):6528–6537. [PubMed] [Google Scholar]
- Maughan D. Diffusible magnesium in frog skeletal muscle cells. Biophys J. 1983 Jul;43(1):75–80. doi: 10.1016/S0006-3495(83)84325-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer R. A. A linear model of muscle respiration explains monoexponential phosphocreatine changes. Am J Physiol. 1988 Apr;254(4 Pt 1):C548–C553. doi: 10.1152/ajpcell.1988.254.4.C548. [DOI] [PubMed] [Google Scholar]
- Meyer R. A., Brown T. R., Kushmerick M. J. Phosphorus nuclear magnetic resonance of fast- and slow-twitch muscle. Am J Physiol. 1985 Mar;248(3 Pt 1):C279–C287. doi: 10.1152/ajpcell.1985.248.3.C279. [DOI] [PubMed] [Google Scholar]
- Pichard C., Vaughan C., Struk R., Armstrong R. L., Jeejeebhoy K. N. Effect of dietary manipulations (fasting, hypocaloric feeding, and subsequent refeeding) on rat muscle energetics as assessed by nuclear magnetic resonance spectroscopy. J Clin Invest. 1988 Sep;82(3):895–901. doi: 10.1172/JCI113695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruderman N. B., Goodman M. N., Berger M., Hagg S. Effect of starvation on muscle glucose metabolism: studies with the isolated perfused rat hindquarter. Fed Proc. 1977 Feb;36(2):171–176. [PubMed] [Google Scholar]
- Russell D. M., Atwood H. L., Whittaker J. S., Itakura T., Walker P. M., Mickle D. A., Jeejeebhoy K. N. The effect of fasting and hypocaloric diets on the functional and metabolic characteristics of rat gastrocnemius muscle. Clin Sci (Lond) 1984 Aug;67(2):185–194. doi: 10.1042/cs0670185. [DOI] [PubMed] [Google Scholar]
- Russell D. M., Atwood H. L., Whittaker J. S., Itakura T., Walker P. M., Mickle D. A., Jeejeebhoy K. N. The effect of fasting and hypocaloric diets on the functional and metabolic characteristics of rat gastrocnemius muscle. Clin Sci (Lond) 1984 Aug;67(2):185–194. doi: 10.1042/cs0670185. [DOI] [PubMed] [Google Scholar]
- Russell D. M., Walker P. M., Leiter L. A., Sima A. A., Tanner W. K., Mickle D. A., Whitwell J., Marliss E. B., Jeejeebhoy K. N. Metabolic and structural changes in skeletal muscle during hypocaloric dieting. Am J Clin Nutr. 1984 Apr;39(4):503–513. doi: 10.1093/ajcn/39.4.503. [DOI] [PubMed] [Google Scholar]
- Shoubridge E. A., Bland J. L., Radda G. K. Regulation of creatine kinase during steady-state isometric twitch contraction in rat skeletal muscle. Biochim Biophys Acta. 1984 Sep 14;805(1):72–78. doi: 10.1016/0167-4889(84)90038-7. [DOI] [PubMed] [Google Scholar]
- Veech R. L., Lawson J. W., Cornell N. W., Krebs H. A. Cytosolic phosphorylation potential. J Biol Chem. 1979 Jul 25;254(14):6538–6547. [PubMed] [Google Scholar]
- Wu S. T., Pieper G. M., Salhany J. M., Eliot R. S. Measurement of free magnesium in perfused and ischemic arrested heart muscle. A quantitative phosphorus-31 nuclear magnetic resonance and multiequilibria analysis. Biochemistry. 1981 Dec 22;20(26):7399–7403. doi: 10.1021/bi00529a012. [DOI] [PubMed] [Google Scholar]