Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Jul;92(1):160–168. doi: 10.1172/JCI116544

Impaired fatty acid metabolism in familial combined hyperlipidemia. A mechanism associating hepatic apolipoprotein B overproduction and insulin resistance.

M Castro Cabezas 1, T W de Bruin 1, H W de Valk 1, C C Shoulders 1, H Jansen 1, D Willem Erkelens 1
PMCID: PMC293556  PMID: 8100834

Abstract

To establish whether insulin resistance and/or postprandial fatty acid metabolism might contribute to familial combined hyperlipidemia (FCH) we have examined parameters of insulin resistance and lipid metabolism in six FCH kindreds. Probands and relatives (n = 56) were divided into three tertiles on the basis of fasting plasma triglycerides (TG). Individuals in the highest tertile (TG > 2.5 mM; n = 14) were older and had increased body mass index, systolic blood pressure, and fasting plasma insulin concentrations compared with individuals in the lowest tertile (n = 24). The former also presented with decreased HDL cholesterol and increased total plasma cholesterol, HDL-TG, and apoprotein B, E, and CIII concentrations. Insulin concentrations were positively correlated with plasma apo B, apo CIII, apo E, and TG, and inversely with HDL cholesterol. Fasting nonesterified fatty acids (NEFA) were elevated in FCH subjects compared to six unrelated controls and five subjects with familial hypertriglyceridemia. Prolonged and exaggerated postprandial plasma NEFA concentrations were found in five hypertriglyceridemic FCH probands. In FCH the X2 minor allele of the AI-CIII-AIV gene cluster was associated with increased fasting plasma TG, apo CIII, apo AI, and NEFA concentrations and decreased postheparin lipolytic activities. The clustering of risk factors associated with insulin resistance in FCH indicates a common metabolic basis for the FCH phenotype and the syndrome of insulin resistance probably mediated by an impaired fatty acid metabolism.

Full text

PDF
160

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin M. A., Brunzell J. D., Fitch W. L., Krauss R. M. Inheritance of low density lipoprotein subclass patterns in familial combined hyperlipidemia. Arteriosclerosis. 1990 Jul-Aug;10(4):520–530. doi: 10.1161/01.atv.10.4.520. [DOI] [PubMed] [Google Scholar]
  2. Austin M. A., King M. C., Vranizan K. M., Krauss R. M. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation. 1990 Aug;82(2):495–506. doi: 10.1161/01.cir.82.2.495. [DOI] [PubMed] [Google Scholar]
  3. Babirak S. P., Iverius P. H., Fujimoto W. Y., Brunzell J. D. Detection and characterization of the heterozygote state for lipoprotein lipase deficiency. Arteriosclerosis. 1989 May-Jun;9(3):326–334. doi: 10.1161/01.atv.9.3.326. [DOI] [PubMed] [Google Scholar]
  4. Bansal B. C., Sood A. K., Bansal C. B. Familial hyperlipidemia in stroke in the young. Stroke. 1986 Nov-Dec;17(6):1142–1145. doi: 10.1161/01.str.17.6.1142. [DOI] [PubMed] [Google Scholar]
  5. Brunzell J. D., Albers J. J., Chait A., Grundy S. M., Groszek E., McDonald G. B. Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia. J Lipid Res. 1983 Feb;24(2):147–155. [PubMed] [Google Scholar]
  6. Cabezas M. C., de Bruin T. W., Kock L. A., Kortlandt W., Van Linde-Sibenius Trip M., Jansen H., Erkelens D. W. Simvastatin improves chylomicron remnant removal in familial combined hyperlipidemia without changing chylomicron conversion. Metabolism. 1993 Apr;42(4):497–503. doi: 10.1016/0026-0495(93)90109-2. [DOI] [PubMed] [Google Scholar]
  7. Castro Cabezas M., de Bruin T. W., Erkelens D. W. Familial combined hyperlipidaemia: 1973-1991. Neth J Med. 1992 Feb;40(1-2):83–95. [PubMed] [Google Scholar]
  8. Chait A., Albers J. J., Brunzell J. D. Very low density lipoprotein overproduction in genetic forms of hypertriglyceridaemia. Eur J Clin Invest. 1980 Feb;10(1):17–22. doi: 10.1111/j.1365-2362.1980.tb00004.x. [DOI] [PubMed] [Google Scholar]
  9. Cianflone K. M., Maslowska M. H., Sniderman A. D. Impaired response of fibroblasts from patients with hyperapobetalipoproteinemia to acylation-stimulating protein. J Clin Invest. 1990 Mar;85(3):722–730. doi: 10.1172/JCI114497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cianflone K. M., Yasruel Z., Rodriguez M. A., Vas D., Sniderman A. D. Regulation of apoB secretion from HepG2 cells: evidence for a critical role for cholesteryl ester synthesis in the response to a fatty acid challenge. J Lipid Res. 1990 Nov;31(11):2045–2055. [PubMed] [Google Scholar]
  11. Cianflone K., Dahan S., Monge J. C., Sniderman A. D. Pathogenesis of carbohydrate-induced hypertriglyceridemia using HepG2 cells as a model system. Arterioscler Thromb. 1992 Mar;12(3):271–277. doi: 10.1161/01.atv.12.3.271. [DOI] [PubMed] [Google Scholar]
  12. Cortner J. A., Coates P. M., Bennett M. J., Cryer D. R., Le N. A. Familial combined hyperlipidaemia: use of stable isotopes to demonstrate overproduction of very low-density lipoprotein apolipoprotein B by the liver. J Inherit Metab Dis. 1991;14(6):915–922. doi: 10.1007/BF01800473. [DOI] [PubMed] [Google Scholar]
  13. Cortner J. A., Coates P. M., Gallagher P. R. Prevalence and expression of familial combined hyperlipidemia in childhood. J Pediatr. 1990 Apr;116(4):514–519. doi: 10.1016/s0022-3476(05)81595-1. [DOI] [PubMed] [Google Scholar]
  14. Davidson M. B. The effect of aging on carbohydrate metabolism: a review of the English literature and a practical approach to the diagnosis of diabetes mellitus in the elderly. Metabolism. 1979 Jun;28(6):688–705. doi: 10.1016/0026-0495(79)90024-6. [DOI] [PubMed] [Google Scholar]
  15. De Bruin T. W., Brouwer C. B., Gimpel J. A., Erkelens D. W. Postprandial decrease in HDL cholesterol and HDL apo A-I in normal subjects in relation to triglyceride metabolism. Am J Physiol. 1991 Mar;260(3 Pt 1):E492–E498. doi: 10.1152/ajpendo.1991.260.3.E492. [DOI] [PubMed] [Google Scholar]
  16. De Bruin T. W., Vos M. C., Kortlandt W., Bouma B. N., Erkelens D. W. Proteolysis of human apolipoprotein B: effect on quantitative immunoturbidimetry. Clin Chim Acta. 1990 Dec 14;193(3):137–145. doi: 10.1016/0009-8981(90)90245-n. [DOI] [PubMed] [Google Scholar]
  17. Farrer M., Fulcher G. R., Johnson A. J., Record C. O., Alberti K. G. Effect of acute inhibition of lipolysis on operation of the glucose-fatty acid cycle in hepatic cirrhosis. Metabolism. 1992 May;41(5):465–470. doi: 10.1016/0026-0495(92)90202-l. [DOI] [PubMed] [Google Scholar]
  18. Foley J. E. Rationale and application of fatty acid oxidation inhibitors in treatment of diabetes mellitus. Diabetes Care. 1992 Jun;15(6):773–784. doi: 10.2337/diacare.15.6.773. [DOI] [PubMed] [Google Scholar]
  19. Frayn K. N., Coppack S. W. Insulin resistance, adipose tissue and coronary heart disease. Clin Sci (Lond) 1992 Jan;82(1):1–8. doi: 10.1042/cs0820001. [DOI] [PubMed] [Google Scholar]
  20. Goldstein J. L., Schrott H. G., Hazzard W. R., Bierman E. L., Motulsky A. G. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest. 1973 Jul;52(7):1544–1568. doi: 10.1172/JCI107332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. González-Manchón C., Martín-Requero A., Ayuso M. S., Parrilla R. Role of endogenous fatty acids in the control of hepatic gluconeogenesis. Arch Biochem Biophys. 1992 Jan;292(1):95–101. doi: 10.1016/0003-9861(92)90055-2. [DOI] [PubMed] [Google Scholar]
  22. Hunt S. C., Wu L. L., Hopkins P. N., Stults B. M., Kuida H., Ramirez M. E., Lalouel J. M., Williams R. R. Apolipoprotein, low density lipoprotein subfraction, and insulin associations with familial combined hyperlipidemia. Study of Utah patients with familial dyslipidemic hypertension. Arteriosclerosis. 1989 May-Jun;9(3):335–344. doi: 10.1161/01.atv.9.3.335. [DOI] [PubMed] [Google Scholar]
  23. Huttunen J. K., Ehnholm C., Kinnunen P. K., Nikkilä E. A. An immunochemical method for the selective measurement of two triglyceride lipases in human postheparin plasma. Clin Chim Acta. 1975 Sep 16;63(3):335–347. doi: 10.1016/0009-8981(75)90055-8. [DOI] [PubMed] [Google Scholar]
  24. Jackson T. K., Salhanick A. I., Elovson J., Deichman M. L., Amatruda J. M. Insulin regulates apolipoprotein B turnover and phosphorylation in rat hepatocytes. J Clin Invest. 1990 Nov;86(5):1746–1751. doi: 10.1172/JCI114900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Janus E. D., Nicoll A. M., Turner P. R., Magill P., Lewis B. Kinetic bases of the primary hyperlipidaemias: studies of apolipoprotein B turnover in genetically defined subjects. Eur J Clin Invest. 1980 Apr;10(2 Pt 1):161–172. doi: 10.1111/j.1365-2362.1980.tb02076.x. [DOI] [PubMed] [Google Scholar]
  26. Kaplan N. M. Syndromes X: two too many. Am J Cardiol. 1992 Jun 15;69(19):1643–1644. doi: 10.1016/0002-9149(92)90718-e. [DOI] [PubMed] [Google Scholar]
  27. Kaplan N. M. The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med. 1989 Jul;149(7):1514–1520. doi: 10.1001/archinte.149.7.1514. [DOI] [PubMed] [Google Scholar]
  28. Karpe F., Olivecrona T., Walldius G., Hamsten A. Lipoprotein lipase in plasma after an oral fat load: relation to free fatty acids. J Lipid Res. 1992 Jul;33(7):975–984. [PubMed] [Google Scholar]
  29. Kissebah A. H., Peiris A. N. Biology of regional body fat distribution: relationship to non-insulin-dependent diabetes mellitus. Diabetes Metab Rev. 1989 Mar;5(2):83–109. doi: 10.1002/dmr.5610050202. [DOI] [PubMed] [Google Scholar]
  30. Kwiterovich P. O., Jr HyperapoB: a pleiotropic phenotype characterized by dense low-density lipoproteins and associated with coronary artery disease. Clin Chem. 1988;34(8B):B71–B77. [PubMed] [Google Scholar]
  31. Kwiterovich P. O., Jr, Motevalli M., Miller M., Bachorik P. S., Kafonek S. D., Chatterjee S., Beaty T., Virgil D. Further insights into the pathophysiology of hyperapobetalipoproteinemia: role of basic proteins I, II, III. Clin Chem. 1991 Mar;37(3):317–326. [PubMed] [Google Scholar]
  32. Lewis G. F., O'Meara N. M., Soltys P. A., Blackman J. D., Iverius P. H., Pugh W. L., Getz G. S., Polonsky K. S. Fasting hypertriglyceridemia in noninsulin-dependent diabetes mellitus is an important predictor of postprandial lipid and lipoprotein abnormalities. J Clin Endocrinol Metab. 1991 Apr;72(4):934–944. doi: 10.1210/jcem-72-4-934. [DOI] [PubMed] [Google Scholar]
  33. Moller D. E., Flier J. S. Insulin resistance--mechanisms, syndromes, and implications. N Engl J Med. 1991 Sep 26;325(13):938–948. doi: 10.1056/NEJM199109263251307. [DOI] [PubMed] [Google Scholar]
  34. Nishina P. M., Johnson J. P., Naggert J. K., Krauss R. M. Linkage of atherogenic lipoprotein phenotype to the low density lipoprotein receptor locus on the short arm of chromosome 19. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):708–712. doi: 10.1073/pnas.89.2.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Noma A., Hata Y., Goto Y. Quantitation of serum apolipoprotein A-I, A-II, B, C-II, C-III and E in healthy Japanese by turbidimetric immunoassay: reference values, and age- and sex-related differences. Clin Chim Acta. 1991 Jun 14;199(2):147–157. doi: 10.1016/0009-8981(91)90106-m. [DOI] [PubMed] [Google Scholar]
  36. Nuutila P., Koivisto V. A., Knuuti J., Ruotsalainen U., Teräs M., Haaparanta M., Bergman J., Solin O., Voipio-Pulkki L. M., Wegelius U. Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo. J Clin Invest. 1992 Jun;89(6):1767–1774. doi: 10.1172/JCI115780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. O'Meara N. M., Lewis G. F., Cabana V. G., Iverius P. H., Getz G. S., Polonsky K. S. Role of basal triglyceride and high density lipoprotein in determination of postprandial lipid and lipoprotein responses. J Clin Endocrinol Metab. 1992 Aug;75(2):465–471. doi: 10.1210/jcem.75.2.1639947. [DOI] [PubMed] [Google Scholar]
  38. Peterson J., Bihain B. E., Bengtsson-Olivecrona G., Deckelbaum R. J., Carpentier Y. A., Olivecrona T. Fatty acid control of lipoprotein lipase: a link between energy metabolism and lipid transport. Proc Natl Acad Sci U S A. 1990 Feb;87(3):909–913. doi: 10.1073/pnas.87.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rauh G., Schuster H., Müller B., Schewe S., Keller C., Wolfram G., Zöllner N. Genetic evidence from 7 families that the apolipoprotein B gene is not involved in familial combined hyperlipidemia. Atherosclerosis. 1990 Jul;83(1):81–87. doi: 10.1016/0021-9150(90)90133-4. [DOI] [PubMed] [Google Scholar]
  40. Reaven G. M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988 Dec;37(12):1595–1607. doi: 10.2337/diab.37.12.1595. [DOI] [PubMed] [Google Scholar]
  41. Reaven G. M. The role of insulin resistance and hyperinsulinemia in coronary heart disease. Metabolism. 1992 May;41(5 Suppl 1):16–19. doi: 10.1016/0026-0495(92)90088-r. [DOI] [PubMed] [Google Scholar]
  42. Salhanick A. I., Schwartz S. I., Amatruda J. M. Insulin inhibits apolipoprotein B secretion in isolated human hepatocytes. Metabolism. 1991 Mar;40(3):275–279. doi: 10.1016/0026-0495(91)90109-a. [DOI] [PubMed] [Google Scholar]
  43. Saxena U., Witte L. D., Goldberg I. J. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids. J Biol Chem. 1989 Mar 15;264(8):4349–4355. [PubMed] [Google Scholar]
  44. Selby J. V., Newman B., Quiroga J., Christian J. C., Austin M. A., Fabsitz R. R. Concordance for dyslipidemic hypertension in male twins. JAMA. 1991 Apr 24;265(16):2079–2084. [PubMed] [Google Scholar]
  45. Sparks J. D., Sparks C. E. Insulin modulation of hepatic synthesis and secretion of apolipoprotein B by rat hepatocytes. J Biol Chem. 1990 May 25;265(15):8854–8862. [PubMed] [Google Scholar]
  46. Williams K. J., Petrie K. A., Brocia R. W., Swenson T. L. Lipoprotein lipase modulates net secretory output of apolipoprotein B in vitro. A possible pathophysiologic explanation for familial combined hyperlipidemia. J Clin Invest. 1991 Oct;88(4):1300–1306. doi: 10.1172/JCI115434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wojciechowski A. P., Farrall M., Cullen P., Wilson T. M., Bayliss J. D., Farren B., Griffin B. A., Caslake M. J., Packard C. J., Shepherd J. Familial combined hyperlipidaemia linked to the apolipoprotein AI-CII-AIV gene cluster on chromosome 11q23-q24. Nature. 1991 Jan 10;349(6305):161–164. doi: 10.1038/349161a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES