Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Jul;92(1):218–223. doi: 10.1172/JCI116553

Spontaneously oscillating K+ channel activity in transformed Madin-Darby canine kidney cells.

A Schwab 1, H J Westphale 1, L Wojnowski 1, S Wünsch 1, H Oberleithner 1
PMCID: PMC293572  PMID: 8325988

Abstract

Intracellular alkalinization is known to be associated with tumorigenic transformation. Besides phenotypical alterations alkali-transformed Madin-Darby canine kidney (MDCK) cells exhibit a spontaneously oscillating cell membrane potential (PD). Using single-channel patch clamp techniques, it was the aim of this study to identify the ion channel underlying the rhythmic hyperpolarizations of the PD. In the cell-attached patch configuration, we found that channel activity was oscillating. The frequency of channel oscillations is 1.1 +/- 0.1 min-1. At the peak of oscillatory channel activity, single-channel current was -2.7 +/- 0.05 pA, and in the resting state it was -1.95 +/- 0.05 pA. Given the single-channel conductance of 53 +/- 3 pS for inward (and of 27 +/- 5 pS for outward) current the difference of single-channel current amplitude corresponded to a hyperpolarization of approximately 14 mV. The channel is selective for K+ over Na+. Channel kinetics are characterized by one open and by three closed time constants. The channel is Ca2+ sensitive. Half maximal activation in the inside-out patch mode is achieved at a Ca2+ concentration of 10 mumol/liter. In addition, we also found a 13-pS K+ channel that shows no oscillatory activity in the cell-attached patch configuration and that was not Ca2+ sensitive. We conclude that the Ca(2+)-sensitive 53-pS K+ channel is underlying spontaneous oscillations of the PD. It has virtually identical biophysical properties as a Ca(2+)-sensitive K+ channel in nontransformed parent MDCK cells. Hence, alkali-induced transformation of MDCK cells did not affect the channel protein itself but its regulators thereby causing spontaneous fluctuations of the PD.

Full text

PDF
218

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Enomoto K., Furuya K., Maeno T., Edwards C., Oka T. Oscillating activity of a calcium-activated K+ channel in normal and cancerous mammary cells in culture. J Membr Biol. 1991 Jan;119(2):133–139. doi: 10.1007/BF01871412. [DOI] [PubMed] [Google Scholar]
  2. Friedrich F., Paulmichl M., Kolb H. A., Lang F. Inward rectifier K channels in renal epithelioid cells (MDCK) activated by serotonin. J Membr Biol. 1988 Dec;106(2):149–155. doi: 10.1007/BF01871397. [DOI] [PubMed] [Google Scholar]
  3. Furuya K., Enomoto K., Furuya S., Yamagishi S., Edwards C., Oka T. Single calcium-activated potassium channel in cultured mammary epithelial cells. Pflugers Arch. 1989 Jun;414(2):118–124. doi: 10.1007/BF00580952. [DOI] [PubMed] [Google Scholar]
  4. Furuya K., Enomoto K. Real-time imaging of intracellular calcium change with simultaneous single channel recording in mammary epithelial cells. Brain Res Bull. 1990 Nov;25(5):779–781. doi: 10.1016/0361-9230(90)90058-8. [DOI] [PubMed] [Google Scholar]
  5. Grandin N., Charbonneau M. Intracellular free calcium oscillates during cell division of Xenopus embryos. J Cell Biol. 1991 Feb;112(4):711–718. doi: 10.1083/jcb.112.4.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  7. Huang M., Chida K., Kamata N., Nose K., Kato M., Homma Y., Takenawa T., Kuroki T. Enhancement of inositol phospholipid metabolism and activation of protein kinase C in ras-transformed rat fibroblasts. J Biol Chem. 1988 Dec 5;263(34):17975–17980. [PubMed] [Google Scholar]
  8. Kersting U., Wojnowski L., Steigner W., Oberleithner H. Hypotonic stress-induced release of KHCO3 in fused renal epitheloid (MDCK) cells. Kidney Int. 1991 May;39(5):891–900. doi: 10.1038/ki.1991.112. [DOI] [PubMed] [Google Scholar]
  9. Lang F., Friedrich F., Kahn E., Wöll E., Hammerer M., Waldegger S., Maly K., Grunicke H. Bradykinin-induced oscillations of cell membrane potential in cells expressing the Ha-ras oncogene. J Biol Chem. 1991 Mar 15;266(8):4938–4942. [PubMed] [Google Scholar]
  10. Marks P. W., Maxfield F. R. Transient increases in cytosolic free calcium appear to be required for the migration of adherent human neutrophils. J Cell Biol. 1990 Jan;110(1):43–52. doi: 10.1083/jcb.110.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Oberleithner H., Westphale H. J., Gassner B. Alkaline stress transforms Madin-Darby canine kidney cells. Pflugers Arch. 1991 Oct;419(3-4):418–420. doi: 10.1007/BF00371126. [DOI] [PubMed] [Google Scholar]
  12. Peres A., Giovannardi S. Mitogen-induced oscillations of membrane potential and Ca2+ in human fibroblasts. FEBS Lett. 1990 Feb 12;261(1):35–38. doi: 10.1016/0014-5793(90)80630-2. [DOI] [PubMed] [Google Scholar]
  13. Perona R., Portillo F., Giraldez F., Serrano R. Transformation and pH homeostasis of fibroblasts expressing yeast H(+)-ATPase containing site-directed mutations. Mol Cell Biol. 1990 Aug;10(8):4110–4115. doi: 10.1128/mcb.10.8.4110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rane S. G. A Ca2(+)-activated K+ current in ras-transformed fibroblasts is absent from nontransformed cells. Am J Physiol. 1991 Jan;260(1 Pt 1):C104–C112. doi: 10.1152/ajpcell.1991.260.1.C104. [DOI] [PubMed] [Google Scholar]
  15. Schoenenberger C. A., Zuk A., Kendall D., Matlin K. S. Multilayering and loss of apical polarity in MDCK cells transformed with viral K-ras. J Cell Biol. 1991 Mar;112(5):873–889. doi: 10.1083/jcb.112.5.873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stefani E., Cereijido M. Electrical properties of cultured epithelioid cells (MDCK). J Membr Biol. 1983;73(2):177–184. doi: 10.1007/BF01870440. [DOI] [PubMed] [Google Scholar]
  17. Warren S. L., Nelson W. J. Nonmitogenic morphoregulatory action of pp60v-src on multicellular epithelial structures. Mol Cell Biol. 1987 Apr;7(4):1326–1337. doi: 10.1128/mcb.7.4.1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Westphale H. J., Wojnowski L., Schwab A., Oberleithner H. Spontaneous membrane potential oscillations in Madin-Darby canine kidney cells transformed by alkaline stress. Pflugers Arch. 1992 Jun;421(2-3):218–223. doi: 10.1007/BF00374830. [DOI] [PubMed] [Google Scholar]
  19. Wöll E., Waldegger S., Lang F., Maly K., Grunicke H. Mechanism of intracellular calcium oscillations in fibroblasts expressing the ras oncogene. Pflugers Arch. 1992 Feb;420(2):208–212. doi: 10.1007/BF00374992. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES