Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Jul;92(1):272–280. doi: 10.1172/JCI116561

Adaptation to supraphysiologic levels of insulin gene expression in transgenic mice: evidence for the importance of posttranscriptional regulation.

B Schnetzler 1, G Murakawa 1, D Abalos 1, P Halban 1, R Selden 1
PMCID: PMC293587  PMID: 8325994

Abstract

Insulin production was studied in transgenic mice expressing the human insulin gene under the control of its own promoter. Glucose homeostasis during a 48-h fast was similar in control and transgenic mice, with comparable levels of serum immunoreactive insulin. Northern blot and primer extension analyses indicated that more than twice as much insulin mRNA is present in pancreata from transgenic mice. Primer extension analysis using oligonucleotides specific for mouse insulins I and II or for human insulin, showed that the excess insulin mRNA was due solely to expression of the foreign, human insulin gene. The ratio of mRNA for mouse insulin I and II was unaffected by coexpression of human insulin. There were coordinate changes in the levels of all three mRNA during the 48-h fast, or after a 24-h fast followed by 24-h refeed. Despite the supraphysiologic levels of insulin mRNA in the transgenic mice, their pancreatic content of immunoreactive insulin was not significantly different from controls. The comparison of the relative levels of human and mouse insulin mRNAs with their peptide counterparts (separated by HPLC) indicates that the efficiency of insulin production from mouse insulin mRNA is greater than that from human, stressing the importance of posttranscriptional regulatory events in the overall maintenance of pancreatic insulin content.

Full text

PDF
272

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bucchini D., Madsen O., Desbois P., Pictet R., Jami J. B islet cells of pancreas are the site of expression of the human insulin gene in transgenic mice. Exp Cell Res. 1989 Feb;180(2):467–474. doi: 10.1016/0014-4827(89)90073-6. [DOI] [PubMed] [Google Scholar]
  2. Bucchini D., Ripoche M. A., Stinnakre M. G., Desbois P., Lorès P., Monthioux E., Absil J., Lepesant J. A., Pictet R., Jami J. Pancreatic expression of human insulin gene in transgenic mice. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2511–2515. doi: 10.1073/pnas.83.8.2511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carroll R. J., Hammer R. E., Chan S. J., Swift H. H., Rubenstein A. H., Steiner D. F. A mutant human proinsulin is secreted from islets of Langerhans in increased amounts via an unregulated pathway. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8943–8947. doi: 10.1073/pnas.85.23.8943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cate R. L., Chick W., Gilbert W. Comparison of the methylation patterns of the two rat insulin genes. J Biol Chem. 1983 May 25;258(10):6645–6652. [PubMed] [Google Scholar]
  5. Chicheportiche D., Darquy S., Lepeintre J., Capron F., Halban P. A., Reach G. High-performance liquid chromatography analysis of circulating insulins distinguishes between endogenous insulin production (a potential pitfall with streptozotocin diabetic rats) and islet xenograft function. Diabetologia. 1990 Aug;33(8):457–461. doi: 10.1007/BF00405105. [DOI] [PubMed] [Google Scholar]
  6. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  7. Clark J. L., Steiner D. F. Insulin biosynthesis in the rat: demonstration of two proinsulins. Proc Natl Acad Sci U S A. 1969 Jan;62(1):278–285. doi: 10.1073/pnas.62.1.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cordell B., Diamond D., Smith S., Pünter J., Schöne H. H., Goodman H. M. Disproportionate expression of the two nonallelic rat insulin genes in a pancreatic tumor is due to translational control. Cell. 1982 Dec;31(3 Pt 2):531–542. doi: 10.1016/0092-8674(82)90309-9. [DOI] [PubMed] [Google Scholar]
  9. Curry D. L. Insulin content and insulinogenesis by the perfused rat pancreas: effects of long term glucose stimulation. Endocrinology. 1986 Jan;118(1):170–175. doi: 10.1210/endo-118-1-170. [DOI] [PubMed] [Google Scholar]
  10. Fromont-Racine M., Bucchini D., Madsen O., Desbois P., Linde S., Nielsen J. H., Saulnier C., Ripoche M. A., Jami J., Pictet R. Effect of 5'-flanking sequence deletions on expression of the human insulin gene in transgenic mice. Mol Endocrinol. 1990 May;4(5):669–677. doi: 10.1210/mend-4-5-669. [DOI] [PubMed] [Google Scholar]
  11. Giddings S. J., Carnaghi L. R. The two nonallelic rat insulin mRNAs and pre-mRNAs are regulated coordinately in vivo. J Biol Chem. 1988 Mar 15;263(8):3845–3849. [PubMed] [Google Scholar]
  12. Giddings S. J., Chirgwin J., Permutt M. A. The effects of fasting and feeding on preproinsulin messenger RNA in rats. J Clin Invest. 1981 Apr;67(4):952–960. doi: 10.1172/JCI110145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gross D., Skvorak A., Hendrick G., Weir G., Villa-Komaroff L., Halban P. Oxidation of rat insulin II, but not I, leads to anomalous elution profiles upon HPLC analysis of insulin-related peptides. FEBS Lett. 1988 Dec 5;241(1-2):205–208. doi: 10.1016/0014-5793(88)81062-7. [DOI] [PubMed] [Google Scholar]
  14. Halban P. A. Inhibition of proinsulin to insulin conversion in rat islets using arginine and lysine analogs. Lack of effect on rate of release of modified products. J Biol Chem. 1982 Nov 25;257(22):13177–13180. [PubMed] [Google Scholar]
  15. Halban P. A. Structural domains and molecular lifestyles of insulin and its precursors in the pancreatic beta cell. Diabetologia. 1991 Nov;34(11):767–778. doi: 10.1007/BF00408349. [DOI] [PubMed] [Google Scholar]
  16. Halban P. A., Wollheim C. B. Intracellular degradation of insulin stores by rat pancreatic islets in vitro. An alternative pathway for homeostasis of pancreatic insulin content. J Biol Chem. 1980 Jul 10;255(13):6003–6006. [PubMed] [Google Scholar]
  17. Hedeskov C. J. Mechanism of glucose-induced insulin secretion. Physiol Rev. 1980 Apr;60(2):442–509. doi: 10.1152/physrev.1980.60.2.442. [DOI] [PubMed] [Google Scholar]
  18. Herbert V., Lau K. S., Gottlieb C. W., Bleicher S. J. Coated charcoal immunoassay of insulin. J Clin Endocrinol Metab. 1965 Oct;25(10):1375–1384. doi: 10.1210/jcem-25-10-1375. [DOI] [PubMed] [Google Scholar]
  19. Inoue T., Cech T. R. Secondary structure of the circular form of the Tetrahymena rRNA intervening sequence: a technique for RNA structure analysis using chemical probes and reverse transcriptase. Proc Natl Acad Sci U S A. 1985 Feb;82(3):648–652. doi: 10.1073/pnas.82.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Koranyi L., Permutt M. A., Chirgwin J. M., Giddings S. J. Proinsulin I and II gene expression in inbred mouse strains. Mol Endocrinol. 1989 Nov;3(11):1895–1902. doi: 10.1210/mend-3-11-1895. [DOI] [PubMed] [Google Scholar]
  21. Linde S., Nielsen J. H., Hansen B., Welinder B. S. Reversed-phase high-performance liquid chromatographic analyses of insulin biosynthesis in isolated rat and mouse islets. J Chromatogr. 1989 Jan 13;462:243–254. doi: 10.1016/s0021-9673(00)91351-7. [DOI] [PubMed] [Google Scholar]
  22. Lomedico P., Rosenthal N., Efstratidadis A., Gilbert W., Kolodner R., Tizard R. The structure and evolution of the two nonallelic rat preproinsulin genes. Cell. 1979 Oct;18(2):545–558. doi: 10.1016/0092-8674(79)90071-0. [DOI] [PubMed] [Google Scholar]
  23. Marban S. L., DeLoia J. A., Gearhart J. D. Hyperinsulinemia in transgenic mice carrying multiple copies of the human insulin gene. Dev Genet. 1989;10(5):356–364. doi: 10.1002/dvg.1020100503. [DOI] [PubMed] [Google Scholar]
  24. Murakawa G. J., Chen C. H., Kuwabara M. D., Nierlich D. P., Sigman D. S. Scission of RNA by the chemical nuclease of 1,10-phenanthroline-copper ion: preference for single-stranded loops. Nucleic Acids Res. 1989 Jul 11;17(13):5361–5375. doi: 10.1093/nar/17.13.5361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Murakawa G. J., Nierlich D. P. Mapping the lacZ ribosome binding site by RNA footprinting. Biochemistry. 1989 Oct 3;28(20):8067–8072. doi: 10.1021/bi00446a015. [DOI] [PubMed] [Google Scholar]
  26. Nielsen D. A., Welsh M., Casadaban M. J., Steiner D. F. Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. I. Effects of glucose and cyclic AMP on the transcription of insulin mRNA. J Biol Chem. 1985 Nov 5;260(25):13585–13589. [PubMed] [Google Scholar]
  27. Orci L., Ravazzola M., Amherdt M., Yanaihara C., Yanaihara N., Halban P., Renold A. E., Perrelet A. Insulin, not C-peptide (proinsulin), is present in crinophagic bodies of the pancreatic B-cell. J Cell Biol. 1984 Jan;98(1):222–228. doi: 10.1083/jcb.98.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Philippe J. Structure and pancreatic expression of the insulin and glucagon genes. Endocr Rev. 1991 Aug;12(3):252–271. doi: 10.1210/edrv-12-3-252. [DOI] [PubMed] [Google Scholar]
  29. Rhodes C. J., Lucas C. A., Halban P. A. Glucose stimulates the biosynthesis of rat I and II insulin to an equal extent in isolated pancreatic islets. FEBS Lett. 1987 May 4;215(1):179–182. doi: 10.1016/0014-5793(87)80137-0. [DOI] [PubMed] [Google Scholar]
  30. Selden R. F., Skoskiewicz M. J., Howie K. B., Russell P. S., Goodman H. M. Implantation of genetically engineered fibroblasts into mice: implications for gene therapy. Science. 1987 May 8;236(4802):714–718. doi: 10.1126/science.3472348. [DOI] [PubMed] [Google Scholar]
  31. Selden R. F., Skośkiewicz M. J., Howie K. B., Russell P. S., Goodman H. M. Regulation of human insulin gene expression in transgenic mice. 1986 May 29-Jun 4Nature. 321(6069):525–528. doi: 10.1038/321525a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Selden R. F., Skośkiewicz M. J., Russell P. S., Goodman H. M. Regulation of insulin-gene expression. Implications for gene therapy. N Engl J Med. 1987 Oct 22;317(17):1067–1076. doi: 10.1056/NEJM198710223171706. [DOI] [PubMed] [Google Scholar]
  33. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Welsh M. Glucose regulation of insulin gene expression. Diabete Metab. 1989 Nov-Dec;15(6):367–371. [PubMed] [Google Scholar]
  35. Welsh M., Nielsen D. A., MacKrell A. J., Steiner D. F. Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. II. Regulation of insulin mRNA stability. J Biol Chem. 1985 Nov 5;260(25):13590–13594. [PubMed] [Google Scholar]
  36. Welsh M., Scherberg N., Gilmore R., Steiner D. F. Translational control of insulin biosynthesis. Evidence for regulation of elongation, initiation and signal-recognition-particle-mediated translational arrest by glucose. Biochem J. 1986 Apr 15;235(2):459–467. doi: 10.1042/bj2350459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wentworth B. M., Rhodes C., Schnetzler B., Gross D. J., Halban P. A., Villa-Komaroff L. The ratio of mouse insulin I:insulin II does not reflect that of the corresponding preproinsulin mRNAs. Mol Cell Endocrinol. 1992 Aug;86(3):177–186. doi: 10.1016/0303-7207(92)90142-s. [DOI] [PubMed] [Google Scholar]
  38. Wentworth B. M., Schaefer I. M., Villa-Komaroff L., Chirgwin J. M. Characterization of the two nonallelic genes encoding mouse preproinsulin. J Mol Evol. 1986;23(4):305–312. doi: 10.1007/BF02100639. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES