Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Jul;92(1):303–307. doi: 10.1172/JCI116567

Glucocorticoid induction of epinephrine synthesizing enzyme in rat skeletal muscle and insulin resistance.

B Kennedy 1, H Elayan 1, M G Ziegler 1
PMCID: PMC293595  PMID: 8325998

Abstract

Rat skeletal muscle contains two enzymes which can make epinephrine: phenylethanolamine N-methyltransferase (PNMT) and nonspecific N-methyltransferase. We studied the time-course and mechanism by which the glucocorticoid dexamethasone increases muscle PNMT activity. We also examined the hypothesis that increased muscle E synthesis may contribute to glucocorticoid-induced insulin resistance. Dexamethasone (1 mg/kg s.c. for 12 d) increased muscle PNMT activity seven-fold but did not change NMT activity. Immunotitration with an anti-PNMT antibody indicated that the PNMT elevation was due to increased numbers of PNMT molecules. Dexamethasone rapidly increased PNMT activity and this elevation was largely maintained 6 d after glucocorticoid treatment stopped. Muscle epinephrine levels were transiently elevated by dexamethasone. Dexamethasone-treated rats had elevated insulin levels after a glucose load, and chronic administration of the PNMT inhibitor SKF 64139 reversed this increase. Chronic SKF 64139 improved glucose tolerance in normal rats. Dexamethasone induced muscle synthesis of the epinephrine-forming enzyme PNMT. A PNMT inhibitor lowered insulin levels in glucocorticoid-treated rats and glucose levels in untreated rats. These findings are compatible with antagonism of insulin-mediated glucose uptake by epinephrine synthesized in skeletal muscle.

Full text

PDF
303

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AXELROD J. Purification and properties of phenylethanolamine-N-methyl transferase. J Biol Chem. 1962 May;237:1657–1660. [PubMed] [Google Scholar]
  2. Block N. E., Buse M. G. Effects of hypercortisolemia and diabetes on skeletal muscle insulin receptor function in vitro and in vivo. Am J Physiol. 1989 Jan;256(1 Pt 1):E39–E48. doi: 10.1152/ajpendo.1989.256.1.E39. [DOI] [PubMed] [Google Scholar]
  3. Bonner-Weir S., Trent D. F., Weir G. C. Partial pancreatectomy in the rat and subsequent defect in glucose-induced insulin release. J Clin Invest. 1983 Jun;71(6):1544–1553. doi: 10.1172/JCI110910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caro J. F., Amatruda J. M. Glucocorticoid-induced insulin resistance: the importance of postbinding events in the regulation of insulin binding, action, and degradation in freshly isolated and primary cultures of rat hepatocytes. J Clin Invest. 1982 Apr;69(4):866–875. doi: 10.1172/JCI110526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Haber R. S., Weinstein S. P. Role of glucose transporters in glucocorticoid-induced insulin resistance. GLUT4 isoform in rat skeletal muscle is not decreased by dexamethasone. Diabetes. 1992 Jun;41(6):728–735. doi: 10.2337/diab.41.6.728. [DOI] [PubMed] [Google Scholar]
  6. Hobel C. J., Parvez H., Parvez S., Lirette M., Papiernik E. Enzymes for epinephrine synthesis and metabolism in the myometrium, endometrium, red blood cells, and plasma of pregnant human subjects. Am J Obstet Gynecol. 1981 Dec 15;141(8):1009–1018. doi: 10.1016/s0002-9378(16)32692-8. [DOI] [PubMed] [Google Scholar]
  7. James D. E., Burleigh K. M., Kraegen E. W. In vivo glucose metabolism in individual tissues of the rat. Interaction between epinephrine and insulin. J Biol Chem. 1986 May 15;261(14):6366–6374. [PubMed] [Google Scholar]
  8. Kahn C. R., Goldfine I. D., Neville D. M., Jr, De Meyts P. Alterations in insulin binding induced by changes in vivo in the levels of glucocorticoids and growth hormone. Endocrinology. 1978 Oct;103(4):1054–1066. doi: 10.1210/endo-103-4-1054. [DOI] [PubMed] [Google Scholar]
  9. Karasik A., Kahn C. R. Dexamethasone-induced changes in phosphorylation of the insulin and epidermal growth factor receptors and their substrates in intact rat hepatocytes. Endocrinology. 1988 Nov;123(5):2214–2222. doi: 10.1210/endo-123-5-2214. [DOI] [PubMed] [Google Scholar]
  10. Kennedy B., Elayan H., Ziegler M. G. Epinephrine synthesis by rat arteries. Am J Hypertens. 1991 Jan;4(1 Pt 1):45–50. doi: 10.1093/ajh/4.1.45. [DOI] [PubMed] [Google Scholar]
  11. Kennedy B., Elayan H., Ziegler M. G. Lung epinephrine synthesis. Am J Physiol. 1990 Apr;258(4 Pt 1):L227–L231. doi: 10.1152/ajplung.1990.258.4.L227. [DOI] [PubMed] [Google Scholar]
  12. Kennedy B., Ziegler M. G. A more sensitive and specific radioenzymatic assay for catecholamines. Life Sci. 1990;47(23):2143–2153. doi: 10.1016/0024-3205(90)90314-h. [DOI] [PubMed] [Google Scholar]
  13. Kennedy B., Ziegler M. G. Cardiac epinephrine synthesis. Regulation by a glucocorticoid. Circulation. 1991 Aug;84(2):891–895. doi: 10.1161/01.cir.84.2.891. [DOI] [PubMed] [Google Scholar]
  14. Kopp N., Denoroy L., Renaud B., Pujol J. F., Tabib A., Tommasi M. Distribution of adrenaline-synthesizing enzyme activity in the human brain. J Neurol Sci. 1979 May;41(3):397–409. doi: 10.1016/0022-510x(79)90098-4. [DOI] [PubMed] [Google Scholar]
  15. Kuzuya H., Blix P. M., Horwitz D. L., Steiner D. F., Rubenstein A. H. Determination of free and total insulin and C-peptide in insulin-treated diabetics. Diabetes. 1977 Jan;26(1):22–29. doi: 10.2337/diab.26.1.22. [DOI] [PubMed] [Google Scholar]
  16. Laakso M., Edelman S. V., Brechtel G., Baron A. D. Effects of epinephrine on insulin-mediated glucose uptake in whole body and leg muscle in humans: role of blood flow. Am J Physiol. 1992 Aug;263(2 Pt 1):E199–E204. doi: 10.1152/ajpendo.1992.263.2.E199. [DOI] [PubMed] [Google Scholar]
  17. Marfaing P., Ktorza A., Berthault M. F., Predine J., Picon L., Penicaud L. Effects of counterregulatory hormones on insulin-induced glucose utilization by individual tissues in rats. Diabete Metab. 1991 Jan-Feb;17(1):55–60. [PubMed] [Google Scholar]
  18. Nelson D. H., Murray D. K. Dexamethasone inhibition of hydrogen peroxide-stimulated glucose transport. Endocrinology. 1987 Jan;120(1):156–159. doi: 10.1210/endo-120-1-156. [DOI] [PubMed] [Google Scholar]
  19. Ohshima K., Shargill N. S., Chan T. M., Bray G. A. Effects of dexamethasone on glucose transport by skeletal muscles of obese (ob/ob) mice. Int J Obes. 1989;13(2):155–163. [PubMed] [Google Scholar]
  20. Olefsky J. M., Johnson J., Liu F., Jen P., Reaven G. M. The effects of acute and chronic dexamethasone administration on insulin binding to isolated rat hepatocytes and adipocytes. Metabolism. 1975 Apr;24(4):517–527. doi: 10.1016/0026-0495(75)90076-1. [DOI] [PubMed] [Google Scholar]
  21. Orland M. J., Permutt M. A. Comparative modulations of insulin secretion, pancreatic insulin content, and proinsulin mRNA in rats. Effects of 50% pancreatectomy and dexamethasone administration. Diabetes. 1991 Feb;40(2):181–189. doi: 10.2337/diab.40.2.181. [DOI] [PubMed] [Google Scholar]
  22. Pagano G., Cavallo-Perin P., Cassader M., Bruno A., Ozzello A., Masciola P., Dall'omo A. M., Imbimbo B. An in vivo and in vitro study of the mechanism of prednisone-induced insulin resistance in healthy subjects. J Clin Invest. 1983 Nov;72(5):1814–1820. doi: 10.1172/JCI111141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pendleton R. G., Gessner G., Sawyer J. Studies on the distribution of phenylethanolamine N-methyltransferase and epinephrine in the rat. Res Commun Chem Pathol Pharmacol. 1978 Aug;21(2):315–325. [PubMed] [Google Scholar]
  24. Pendleton R. G., Weiner G., Jenkins B. The effect of phenylethanolamine n-methyltransferase concentration and species difference on the inhibitory potency of SK&F 64139. Res Commun Chem Pathol Pharmacol. 1977 Jun;17(2):201–213. [PubMed] [Google Scholar]
  25. Perry B. D., Stolk J. M., Vantini G., Guchhait R. B., U'Prichard D. C. Strain differences in rat brain epinephrine synthesis: regulation of alpha-adrenergic receptor number by epinephrine. Science. 1983 Sep 23;221(4617):1297–1299. doi: 10.1126/science.6310752. [DOI] [PubMed] [Google Scholar]
  26. Rizza R. A., Mandarino L. J., Gerich J. E. Cortisol-induced insulin resistance in man: impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor detect of insulin action. J Clin Endocrinol Metab. 1982 Jan;54(1):131–138. doi: 10.1210/jcem-54-1-131. [DOI] [PubMed] [Google Scholar]
  27. Routledge C., Marsden C. A. Adrenaline in the CNS: in vivo evidence for a functional pathway innervating the hypothalamus. Neuropharmacology. 1987 Jul;26(7B):823–830. doi: 10.1016/0028-3908(87)90058-x. [DOI] [PubMed] [Google Scholar]
  28. Saavedra J. M., Coyle J. T., Axelrod J. The distribution and properties of the nonspecific N-methyltransferase in brain. J Neurochem. 1973 Mar;20(3):743–752. doi: 10.1111/j.1471-4159.1973.tb00035.x. [DOI] [PubMed] [Google Scholar]
  29. Stojanovska L., Rosella G., Proietto J. Dexamethasone-induced increase in the rate of appearance in plasma of gut-derived glucose following an oral glucose load in rats. Metabolism. 1991 Mar;40(3):297–301. doi: 10.1016/0026-0495(91)90113-b. [DOI] [PubMed] [Google Scholar]
  30. Stojanovska L., Rosella G., Proietto J. Evolution of dexamethasone-induced insulin resistance in rats. Am J Physiol. 1990 May;258(5 Pt 1):E748–E756. doi: 10.1152/ajpendo.1990.258.5.E748. [DOI] [PubMed] [Google Scholar]
  31. Struthers A. D., Davies D. L., Harland D., Price J. S., Brown R. A., Quigley C., Brown M. J. Adrenaline causes potassium influx in skeletal muscle and potassium efflux in cardiac muscle in rats: the role of Na/K ATPase. Life Sci. 1987 Jan 5;40(1):101–108. doi: 10.1016/0024-3205(87)90258-x. [DOI] [PubMed] [Google Scholar]
  32. Wan D. C., Livett B. G. Induction of phenylethanolamine N-methyltransferase mRNA expression by glucocorticoids in cultured bovine adrenal chromaffin cells. Eur J Pharmacol. 1989 May 11;172(2):107–115. doi: 10.1016/0922-4106(89)90002-3. [DOI] [PubMed] [Google Scholar]
  33. Williams J. H., Barnes W. S. The positive inotropic effect of epinephrine on skeletal muscle: a brief review. Muscle Nerve. 1989 Dec;12(12):968–975. doi: 10.1002/mus.880121204. [DOI] [PubMed] [Google Scholar]
  34. Wong D. L., Masover S. J., Ciaranello R. D. Regulation of dopamine beta-hydroxylase synthesis and degradation ascorbic acid stabilization of the enzyme against tryptic proteolysis. J Biol Chem. 1981 Jan 25;256(2):695–700. [PubMed] [Google Scholar]
  35. Wurtman R. J., Axelrod J. Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids. J Biol Chem. 1966 May 25;241(10):2301–2305. [PubMed] [Google Scholar]
  36. Ziegler M. G., Kennedy B., Elayan H. A sensitive radioenzymatic assay for epinephrine forming enzymes. Life Sci. 1988;43(25):2117–2122. doi: 10.1016/0024-3205(88)90361-x. [DOI] [PubMed] [Google Scholar]
  37. Ziegler M. G., Kennedy B., Elayan H. Extraadrenal adrenaline formation by two separate enzymes. Experientia. 1989 Aug 15;45(8):718–720. doi: 10.1007/BF01974566. [DOI] [PubMed] [Google Scholar]
  38. Ziegler M. G., Kennedy B., Elayan H. Rat renal epinephrine synthesis. J Clin Invest. 1989 Oct;84(4):1130–1133. doi: 10.1172/JCI114276. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES