Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Jul;92(1):308–314. doi: 10.1172/JCI116568

Transbilayer mobility and distribution of red cell phospholipids during storage.

D Geldwerth 1, F A Kuypers 1, P Bütikofer 1, M Allary 1, B H Lubin 1, P F Devaux 1
PMCID: PMC293596  PMID: 8325999

Abstract

We studied phospholipid topology and transbilayer mobility in red cells during blood storage. The distribution of phospholipids was determined by measuring the reactivity of phosphatidylethanolamine with fluorescamine and the degradation of phospholipids by phospholipase A2 and sphingomyelinase C. Phospholipid mobility was measured by determining transbilayer movements of spin-labeled phospholipids. We were unable to detect a change in the distribution of endogenous membrane phospholipids in stored red cells even after 2-mo storage. The rate of inward movement of spin-labeled phosphatidylethanolamine and phosphatidylserine was progressively reduced, whereas that for phosphatidylcholine was increased. These changes in phospholipid translocation correlated with a fall in cellular ATP. However, following restoration of ATP, neither the rate of aminophospholipid translocation nor the transbilayer movement of phosphatidylcholine were completely corrected. Taken together, our findings demonstrate that red cell storage alters the kinetics of transbilayer mobility of phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine, the activity of the aminophospholipid translocase, but not the asymmetric distribution of endogenous membrane phospholipids, at least at a level detectable with phospholipases. Thus, if phosphatidylserine appearance on the outer monolayer is a signal for red cell elimination, the amount that triggers macrophage recognition is below the level of detection upon using the phospholipase technique.

Full text

PDF
308

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Calvez J. Y., Zachowski A., Herrmann A., Morrot G., Devaux P. F. Asymmetric distribution of phospholipids in spectrin-poor erythrocyte vesicles. Biochemistry. 1988 Jul 26;27(15):5666–5670. doi: 10.1021/bi00415a041. [DOI] [PubMed] [Google Scholar]
  2. Card R. T., Mohandas N., Mollison P. L. Relationship of post-transfusion viability to deformability of stored red cells. Br J Haematol. 1983 Feb;53(2):237–240. doi: 10.1111/j.1365-2141.1983.tb02016.x. [DOI] [PubMed] [Google Scholar]
  3. Clark M. R., Mohandas N., Feo C., Jacobs M. S., Shohet S. B. Separate mechanisms of deformability loss in ATP-depleted and Ca-loaded erythrocytes. J Clin Invest. 1981 Feb;67(2):531–539. doi: 10.1172/JCI110063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Colleau M., Hervé P., Fellmann P., Devaux P. F. Transmembrane diffusion of fluorescent phospholipids in human erythrocytes. Chem Phys Lipids. 1991 Jan-Feb;57(1):29–37. doi: 10.1016/0009-3084(91)90046-e. [DOI] [PubMed] [Google Scholar]
  5. Dern R. J., Brewer G. J., Wiorkowski J. J. Studies on the preservation of human blood. II. The relationship of erythrocyte adenosine triphosphate levels and other in vitro measures to red cell storageability. J Lab Clin Med. 1967 Jun;69(6):968–978. [PubMed] [Google Scholar]
  6. Devaux P. F. Static and dynamic lipid asymmetry in cell membranes. Biochemistry. 1991 Feb 5;30(5):1163–1173. doi: 10.1021/bi00219a001. [DOI] [PubMed] [Google Scholar]
  7. Fadok V. A., Voelker D. R., Campbell P. A., Cohen J. J., Bratton D. L., Henson P. M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol. 1992 Apr 1;148(7):2207–2216. [PubMed] [Google Scholar]
  8. Feuerstein H., Stibenz D. Banking-related decline of erythrocyte N-acetyl-neuraminic acid and phospholipids. Haematologia (Budap) 1982;15(2):205–209. [PubMed] [Google Scholar]
  9. Franck P. F., Op den Kamp J. A., Roelofsen B., van Deenen L. L. Does diamide treatment of intact human erythrocytes cause a loss of phospholipid asymmetry? Biochim Biophys Acta. 1986 May 9;857(1):127–130. doi: 10.1016/0005-2736(86)90106-9. [DOI] [PubMed] [Google Scholar]
  10. Gudi S. R., Kumar A., Bhakuni V., Gokhale S. M., Gupta C. M. Membrane skeleton-bilayer interaction is not the major determinant of membrane phospholipid asymmetry in human erythrocytes. Biochim Biophys Acta. 1990 Mar 30;1023(1):63–72. doi: 10.1016/0005-2736(90)90010-l. [DOI] [PubMed] [Google Scholar]
  11. Haest C. W., Plasa G., Kamp D., Deuticke B. Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane. Biochim Biophys Acta. 1978 May 4;509(1):21–32. doi: 10.1016/0005-2736(78)90004-4. [DOI] [PubMed] [Google Scholar]
  12. Hebbel R. P. Beyond hemoglobin polymerization: the red blood cell membrane and sickle disease pathophysiology. Blood. 1991 Jan 15;77(2):214–237. [PubMed] [Google Scholar]
  13. Herrmann A., Devaux P. F. Alteration of the aminophospholipid translocase activity during in vivo and artificial aging of human erythrocytes. Biochim Biophys Acta. 1990 Aug 10;1027(1):41–46. doi: 10.1016/0005-2736(90)90045-p. [DOI] [PubMed] [Google Scholar]
  14. Kuypers F. A., Lubin B. H., Yee M., Agre P., Devaux P. F., Geldwerth D. The distribution of erythrocyte phospholipids in hereditary spherocytosis demonstrates a minimal role for erythrocyte spectrin on phospholipid diffusion and asymmetry. Blood. 1993 Feb 15;81(4):1051–1057. [PubMed] [Google Scholar]
  15. Lachant N. A., Noble N. A., Myrhe B. A., Tanaka K. R. Antioxidant metabolism during blood storage and its relationship to posttransfusion red cell survival. Am J Hematol. 1984 Oct;17(3):237–249. doi: 10.1002/ajh.2830170304. [DOI] [PubMed] [Google Scholar]
  16. Laczkó J., Feó C. J., Phillips W. Discocyte--echinocyte reversibility in blood stored in CPD over a period of 56 days. Transfusion. 1979 Jul-Aug;19(4):379–388. doi: 10.1046/j.1537-2995.1979.19479250174.x. [DOI] [PubMed] [Google Scholar]
  17. Laczkó J., Feó C. J., Phillips W. Discocyte--echinocyte reversibility in blood stored in CPD over a period of 56 days. Transfusion. 1979 Jul-Aug;19(4):379–388. doi: 10.1046/j.1537-2995.1979.19479250174.x. [DOI] [PubMed] [Google Scholar]
  18. Little C., Rumsby M. G. Lysis of erythrocytes from stored human blood by phospholipase C (Bacillus cereus). Biochem J. 1980 Apr 15;188(1):39–46. doi: 10.1042/bj1880039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McEvoy L., Williamson P., Schlegel R. A. Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages. Proc Natl Acad Sci U S A. 1986 May;83(10):3311–3315. doi: 10.1073/pnas.83.10.3311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mombers C., de Gier J., Demel R. A., van Deenen L. L. Spectrin-phospholipid interaction. A monolayer study. Biochim Biophys Acta. 1980 Dec 2;603(1):52–62. doi: 10.1016/0005-2736(80)90390-9. [DOI] [PubMed] [Google Scholar]
  21. Morrot G., Hervé P., Zachowski A., Fellmann P., Devaux P. F. Aminophospholipid translocase of human erythrocytes: phospholipid substrate specificity and effect of cholesterol. Biochemistry. 1989 Apr 18;28(8):3456–3462. doi: 10.1021/bi00434a046. [DOI] [PubMed] [Google Scholar]
  22. Op den Kamp J. A. Lipid asymmetry in membranes. Annu Rev Biochem. 1979;48:47–71. doi: 10.1146/annurev.bi.48.070179.000403. [DOI] [PubMed] [Google Scholar]
  23. ROSE H. G., OKLANDER M. IMPROVED PROCEDURE FOR THE EXTRACTION OF LIPIDS FROM HUMAN ERYTHROCYTES. J Lipid Res. 1965 Jul;6:428–431. [PubMed] [Google Scholar]
  24. Rawyler A., Roelofsen B., Op den Kamp J. A. The use of fluorescamine as a permeant probe to localize phosphatidylethanolamine in intact friend erythroleukaemic cells. Biochim Biophys Acta. 1984 Jan 25;769(2):330–336. doi: 10.1016/0005-2736(84)90314-6. [DOI] [PubMed] [Google Scholar]
  25. Rouser G., Fkeischer S., Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970 May;5(5):494–496. doi: 10.1007/BF02531316. [DOI] [PubMed] [Google Scholar]
  26. Rumsby M. G., Trotter J., Allan D., Michell R. H. Recovery of membrane micro-vesicles from human erythrocytes stored for transfusion: a mechanism for the erythrocyte discocyte-to-spherocyte shape transformation. Biochem Soc Trans. 1977;5(1):126–128. doi: 10.1042/bst0050126. [DOI] [PubMed] [Google Scholar]
  27. Sato S. B., Ohnishi S. Interaction of a peripheral protein of the erythrocyte membrane, band 4.1, with phosphatidylserine-containing liposomes and erythrocyte inside-out vesicles. Eur J Biochem. 1983 Jan 17;130(1):19–25. doi: 10.1111/j.1432-1033.1983.tb07111.x. [DOI] [PubMed] [Google Scholar]
  28. Schlegel R. A., Prendergast T. W., Williamson P. Membrane phospholipid asymmetry as a factor in erythrocyte-endothelial cell interactions. J Cell Physiol. 1985 May;123(2):215–218. doi: 10.1002/jcp.1041230210. [DOI] [PubMed] [Google Scholar]
  29. Schroeder F. Role of membrane lipid asymmetry in aging. Neurobiol Aging. 1984 Winter;5(4):323–333. doi: 10.1016/0197-4580(84)90010-1. [DOI] [PubMed] [Google Scholar]
  30. Schroit A. J., Zwaal R. F. Transbilayer movement of phospholipids in red cell and platelet membranes. Biochim Biophys Acta. 1991 Nov 13;1071(3):313–329. doi: 10.1016/0304-4157(91)90019-s. [DOI] [PubMed] [Google Scholar]
  31. Seigneuret M., Devaux P. F. ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3751–3755. doi: 10.1073/pnas.81.12.3751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shukla S. D., Coleman R., Finean J. B., Michell R. H. The use of phospholipase c to detect structural changes in the membranes of human erythrocytes aged by storage. Biochim Biophys Acta. 1978 Sep 22;512(2):341–349. doi: 10.1016/0005-2736(78)90258-4. [DOI] [PubMed] [Google Scholar]
  33. Tanaka Y., Schroit A. J. Insertion of fluorescent phosphatidylserine into the plasma membrane of red blood cells. Recognition by autologous macrophages. J Biol Chem. 1983 Sep 25;258(18):11335–11343. [PubMed] [Google Scholar]
  34. Verkleij A. J., Zwaal R. F., Roelofsen B., Comfurius P., Kastelijn D., van Deenen L. L. The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta. 1973 Oct 11;323(2):178–193. doi: 10.1016/0005-2736(73)90143-0. [DOI] [PubMed] [Google Scholar]
  35. Wagner G. M., Chiu D. T., Qju J. H., Heath R. H., Lubin B. H. Spectrin oxidation correlates with membrane vesiculation in stored RBCs. Blood. 1987 Jun;69(6):1777–1781. [PubMed] [Google Scholar]
  36. Wiley J. S., McCulloch K. E., Bowden D. S. Increased calcium permeability of cold-stored erythrocytes. Blood. 1982 Jul;60(1):92–98. [PubMed] [Google Scholar]
  37. Williamson P., Antia R., Schlegel R. A. Maintenance of membrane phospholipid asymmetry. Lipid-cytoskeletal interactions or lipid pump? FEBS Lett. 1987 Jul 27;219(2):316–320. doi: 10.1016/0014-5793(87)80243-0. [DOI] [PubMed] [Google Scholar]
  38. Wolfe L. C., Byrne A. M., Lux S. E. Molecular defect in the membrane skeleton of blood bank-stored red cells. Abnormal spectrin-protein 4.1-actin complex formation. J Clin Invest. 1986 Dec;78(6):1681–1686. doi: 10.1172/JCI112762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wolfe L. C. Oxidative injuries to the red cell membrane during conventional blood preservation. Semin Hematol. 1989 Oct;26(4):307–312. [PubMed] [Google Scholar]
  40. Wolfe L. C. The membrane and the lesions of storage in preserved red cells. Transfusion. 1985 May-Jun;25(3):185–203. doi: 10.1046/j.1537-2995.1985.25385219897.x. [DOI] [PubMed] [Google Scholar]
  41. Wolfe L. The red cell membrane and the storage lesion. Clin Haematol. 1985 Feb;14(1):259–276. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES