Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Jan;141(1):350–358. doi: 10.1128/jb.141.1.350-358.1980

Amphotericin B-induced changes in K+ content, viability, and ultrastructure of yeast-phase Histoplasma capsulatum.

W N Arnold, A T Pringle, R G Garrison
PMCID: PMC293597  PMID: 7354001

Abstract

Yeast-phase cells of Histoplasma capsulatum were challenged with amphotericin B, and membrane perturbation was monitored by K+ efflux. Suspensions of washed cells readily absorbed about 1.12 microgram of amphotericin B per mg (dry weight) and further nonspecific sites were also apparent. The dose-response curve for initial rate of K+ efflux was sigmoidal within the range 0.1 to 1.0 microgram of amphotericin B per ml. A fungistatic concentration of amphotericin B (0.3 microgram/ml) evoked an efflux of 85 to 90% K+ from the cells within 15 min, but cell viability decreased only 13% (yeast phase) or 33% (transformed to mycelial units). Ultrastructural changes in treated cells were detected within 5 min, and the hallmark was expansion of vacuoles during the 1-h monitoring period. In contradistinction to a previous report, the appearance of the protoplasmic membrane was not altered by fungistatic concentration. When treated cells were returned to a fresh growth medium, there was a pronounced lag (20 h). During this apparent recovery phase, the large vacuoles fragmented and returned to normal size. It is proposed that vacuoles of H. capsulatum act as a spatial buffer of considerable survival value to stressed cells.

Full text

PDF
350

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Domer J. E., Hamilton J. G. The readily extracted lipids of Histoplasma capsulatum and Blastomyces dermatitidis. Biochim Biophys Acta. 1971 May 4;231(3):465–478. doi: 10.1016/0005-2760(71)90114-7. [DOI] [PubMed] [Google Scholar]
  2. Gale E. F. The release of potassium ions from Candida albicans in the presence of polyene antibiotics. J Gen Microbiol. 1974 Feb;80(2):451–465. doi: 10.1099/00221287-80-2-451. [DOI] [PubMed] [Google Scholar]
  3. Garrison R. G., Boyd K. S. Role of the conidium in dimorphism of Blastomyces dermatitidis. Mycopathologia. 1978 Sep 1;64(1):29–33. doi: 10.1007/BF00443085. [DOI] [PubMed] [Google Scholar]
  4. Hamilton-Miller J. M. Chemistry and biology of the polyene macrolide antibiotics. Bacteriol Rev. 1973 Sep;37(3):166–196. [PMC free article] [PubMed] [Google Scholar]
  5. Indge K. J. The isolation and properties of the yeast cell vacuole. J Gen Microbiol. 1968 May;51(3):441–446. doi: 10.1099/00221287-51-3-441. [DOI] [PubMed] [Google Scholar]
  6. KINSKY S. C. Nystatin binding by protoplasts and a particulate fraction of Neurospora crassa, and a basis for the selective toxicity of polyene antifungal antibiotics. Proc Natl Acad Sci U S A. 1962 Jun 15;48:1049–1056. doi: 10.1073/pnas.48.6.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kinsky S. C., Luse S. A., Zopf D., van Deenen L. L., Haxby J. Interaction of filipin and derivatives with erythrocyte membranes and lipid dispersions: electron microscopic observations. Biochim Biophys Acta. 1967;135(5):844–861. doi: 10.1016/0005-2736(67)90055-7. [DOI] [PubMed] [Google Scholar]
  8. LAMPEN J. O., MORGAN E. R., SLOCUM A., ARNOW P. Absorption of nystatin by microorganisms. J Bacteriol. 1959 Aug;78:282–289. doi: 10.1128/jb.78.2.282-289.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Nakamura K. D., Schlenk F. Examination of isolated yeast cell vacuoles for active transport. J Bacteriol. 1974 Apr;118(1):314–316. doi: 10.1128/jb.118.1.314-316.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Norman A. W., Spielvogel A. M., Wong R. G. Polyene antibiotic - sterol interaction. Adv Lipid Res. 1976;14:127–170. [PubMed] [Google Scholar]
  11. SVIHLA G., DAINKO J. L., SCHLENK F. Ultraviolet microscopy of purine compounds in the yeast vacuole. J Bacteriol. 1963 Feb;85:399–409. doi: 10.1128/jb.85.2.399-409.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. SVIHLA G., SCHLENK F. S-adenosylmethionine in the vacuole of Candida utilis. J Bacteriol. 1960 Jun;79:841–848. doi: 10.1128/jb.79.6.841-848.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schwencke J., De Robichon-Szulmajster H. The transport of S-adenosyl-L-methionine in isolated yeast vacuoles and spheroplasts. Eur J Biochem. 1976 May 17;65(1):49–60. doi: 10.1111/j.1432-1033.1976.tb10388.x. [DOI] [PubMed] [Google Scholar]
  14. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  15. Weis M. R., Levine H. B. Inactivation of amphotericin B by reducing agents: influences on growth inhibition of Candida albicans and lysis of erythrocytes. Sabouraudia. 1972 Jul;10(2):132–142. doi: 10.1080/00362177285190271. [DOI] [PubMed] [Google Scholar]
  16. Wiemken A., Matile P., Moor H. Vacuolar dynamics in synchronously budding yeast. Arch Mikrobiol. 1970;70(2):89–103. doi: 10.1007/BF00412200. [DOI] [PubMed] [Google Scholar]
  17. Zygmunt W. A., Tavormina P. A. Steroid interference with antifungal activity of polyene antibiotics. Appl Microbiol. 1966 Nov;14(6):865–869. doi: 10.1128/am.14.6.865-869.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES