Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Jan;141(1):401–404. doi: 10.1128/jb.141.1.401-404.1980

Effects of an insertion mutation in a locus affecting pyridine nucleotide transhydrogenase (pnt::Tn5) on the growth of Escherichia coli.

R L Hanson, C Rose
PMCID: PMC293612  PMID: 6986364

Abstract

The effects of a pnt::Tn5 insertion mutation on the growth of strains lacking phosphoglucoisomerase or glucose 6-phosphate dehydrogenase were examined. The results support the idea that the energy-linked transhydrogenase is an important source of reduced nicotinamide adenine dinucleotide phosphate for Escherichia coli under some conditions.

Full text

PDF
401

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bragg P. D., Davies P. L., Hou C. Function of energy-dependent transhydrogenase in Escherichia coli. Biochem Biophys Res Commun. 1972 Jun 9;47(5):1248–1255. doi: 10.1016/0006-291x(72)90969-2. [DOI] [PubMed] [Google Scholar]
  2. Csonka L. N., Fraenkel D. G. Pathways of NADPH formation in Escherichia coli. J Biol Chem. 1977 May 25;252(10):3382–3391. [PubMed] [Google Scholar]
  3. Fraenkel D. G., Levisohn S. R. Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase. J Bacteriol. 1967 May;93(5):1571–1578. doi: 10.1128/jb.93.5.1571-1578.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fraenkel D. G. Selection of Escherichia coli mutants lacking glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase. J Bacteriol. 1968 Apr;95(4):1267–1271. doi: 10.1128/jb.95.4.1267-1271.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gerolimatos B., Hanson R. L. Repression of Escherichia coli pyridine nucleotide transhydrogenase by leucine. J Bacteriol. 1978 May;134(2):394–400. doi: 10.1128/jb.134.2.394-400.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hansen E. J., Juni E. Isolation of mutants of Escherichia coli lacking NAD- and NADP-linked malic. Biochem Biophys Res Commun. 1975 Jul 22;65(2):559–566. doi: 10.1016/s0006-291x(75)80183-5. [DOI] [PubMed] [Google Scholar]
  7. Hanson R. L., Rose C. Genetic mapping of a mutation affecting pyridine nucleotide transhydrogenase in Escherichia coli. J Bacteriol. 1979 Jun;138(3):783–787. doi: 10.1128/jb.138.3.783-787.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kleckner N., Roth J., Botstein D. Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J Mol Biol. 1977 Oct 15;116(1):125–159. doi: 10.1016/0022-2836(77)90123-1. [DOI] [PubMed] [Google Scholar]
  9. Murai T., Tokushige M., Nagai J., Katsuki H. Studies on regulatory functions of malic enzymes. I. Metabolic functions of NAD- and NADP-linked malic enzymes in Escherichia coli. J Biochem. 1972 Jun;71(6):1015–1028. doi: 10.1093/oxfordjournals.jbchem.a129850. [DOI] [PubMed] [Google Scholar]
  10. Zahl K. J., Rose C., Hanson R. L. Isolation and partial characterization of a mutant of Escherichia coli lacking pyridine nucleotide transhydrogenase. Arch Biochem Biophys. 1978 Oct;190(2):598–602. doi: 10.1016/0003-9861(78)90315-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES