Abstract
A homologous series of spermidine analogs was synthesized with the general structure NH3+ (CH2)nNH2+(CH2)3NH3+, where spermidine has n = 4. The influence of these compounds on growth and on the syntheses of protein and messenger ribonucleic acid was examined in a spermidine auxotroph of Escherichia coli. All of the homologs tested were taken up by the cells to an intracellular level equivalent to the level of spermidine which gives optimal growth. With increasing chain length of the homologs, there was reduced ability to stimulate growth. The homologs with n = 7 and n = 8 were essentially inactive. A similar specificity was observed when the ability of the homologs to restore the rates of protein and messenger ribonucleic acid chain elongation was compared to that of spermidine. These results suggest that a definite spatial arrangement of the amino groups of spermidine is required for productive interaction at its intracellular site(s) of action.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cassani G., Burgess R. R., Goodman H. M., Gold L. Inhibition of RNA polymerase by streptolydigin. Nat New Biol. 1971 Apr 14;230(15):197–200. doi: 10.1038/newbio230197a0. [DOI] [PubMed] [Google Scholar]
- Cunningham-Rundles S., Maas W. K. Isolation, characterization, and mapping of Escherichia coli mutants blocked in the synthesis of ornithine decarboxylase. J Bacteriol. 1975 Nov;124(2):791–799. doi: 10.1128/jb.124.2.791-799.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Rosa M., De Rosa S., Gambacorta A. Occurrence and characterization of new polyamines in the extreme thermophile Caldariella acidophila. Biochem Biophys Res Commun. 1976 Mar 8;69(1):253–261. doi: 10.1016/s0006-291x(76)80300-2. [DOI] [PubMed] [Google Scholar]
- Forchhammer J., Lindahl L. Growth rate of polypeptide chains as a function of the cell growth rate in a mutant of Escherichia coli 15. J Mol Biol. 1971 Feb 14;55(3):563–568. doi: 10.1016/0022-2836(71)90337-8. [DOI] [PubMed] [Google Scholar]
- Fowler A. V., Zabin I. Amino acid sequence of beta-galactosidase. XI. Peptide ordering procedures and the complete sequence. J Biol Chem. 1978 Aug 10;253(15):5521–5525. [PubMed] [Google Scholar]
- Geiger L. E., Morris D. R. Polyamine deficiency reduces the rate of DNA replication fork movement in Escherichia coli. Nature. 1978 Apr 20;272(5655):730–732. doi: 10.1038/272730a0. [DOI] [PubMed] [Google Scholar]
- Hirshfield I. N., Rosenfeld H. J., Leifer Z., Maas W. K. Isolation and characterization of a mutant of Escherichia coli blocked in the synthesis of putrescine. J Bacteriol. 1970 Mar;101(3):725–730. doi: 10.1128/jb.101.3.725-730.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ISRAEL M., ROSENFIELD J. S., MODEST E. J. ANALOGS OF SPERMINE AND SPERMIDINE. I. SYNTHESIS OF POLYMETHYLENEPOLYAMINES BY REDUCTION OF CYANOETHYLATED ALPHA,OMEGA-ALKYLENEDIAMINES. J Med Chem. 1964 Nov;7:710–716. doi: 10.1021/jm00336a006. [DOI] [PubMed] [Google Scholar]
- Jorstad C. M., Morris D. R. Polyamine limitation of growth slows the rate of polypeptide chain elongation in Escherichia coli. J Bacteriol. 1974 Sep;119(3):857–860. doi: 10.1128/jb.119.3.857-860.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kepes A. Transcription and translation in the lactose operon of Escherichia coli studied by in vivo kinetics. Prog Biophys Mol Biol. 1969;19(1):199–236. doi: 10.1016/0079-6107(69)90006-6. [DOI] [PubMed] [Google Scholar]
- Kuttan R., Radhakrishnan A. N., Spande T., Witkop B. sym-Homospermidine, a naturally occurring polyamine. Biochemistry. 1971 Feb 2;10(3):361–365. doi: 10.1021/bi00779a001. [DOI] [PubMed] [Google Scholar]
- Morris D. R., Hansen M. T. Influence of polyamine limitation on the chain growth rates of beta-galactosidase and of its messenger ribonucleic acid. J Bacteriol. 1973 Nov;116(2):588–592. doi: 10.1128/jb.116.2.588-592.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris D. R., Jorstad C. M. Growth and macromolecular composition of a mutant of Escherichia coli during polyamine limitation. J Bacteriol. 1973 Jan;113(1):271–277. doi: 10.1128/jb.113.1.271-277.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris D. R., Jorstad C. M. Isolation of conditionally putrescine-deficient mutants of Escherichia coli. J Bacteriol. 1970 Mar;101(3):731–737. doi: 10.1128/jb.101.3.731-737.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris D. R., Koffron K. L., Okstein C. J. An automated method for polyamine analysis. Anal Biochem. 1969 Sep;30(3):449–453. doi: 10.1016/0003-2697(69)90140-7. [DOI] [PubMed] [Google Scholar]
- Munro G. F., Bell C. A. Polyamine requirements of a conditional polyamine auxotroph of Escherichia coli. J Bacteriol. 1973 Aug;115(2):469–475. doi: 10.1128/jb.115.2.469-475.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NOVICK R. P., MAAS W. K. Control by endogenously synthesized arginine of the formation of ornithine transcarbamylase in Escherichia coli. J Bacteriol. 1961 Feb;81:236–240. doi: 10.1128/jb.81.2.236-240.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neidhardt F. C., Bloch P. L., Smith D. F. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747. doi: 10.1128/jb.119.3.736-747.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pato M. L., Bennett P. M., von Meyenburg K. Messenger ribonucleic acid synthesis and degradation in Escherichia coli during inhibition of translation. J Bacteriol. 1973 Nov;116(2):710–718. doi: 10.1128/jb.116.2.710-718.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stillway L. W., Walle T. Identification of the unusual polyamines 3,3'-diaminodipropylamine and N,N'-bis(3-aminoproply)-1,3-propanediamine in the white shrimp Penaeus setiferus. Biochem Biophys Res Commun. 1977 Aug 8;77(3):1103–1107. doi: 10.1016/s0006-291x(77)80092-2. [DOI] [PubMed] [Google Scholar]
- Tabor C. W., Kellogg P. D. The effect of isolation conditions on the polyamine content of Escherichia coli ribosomes. J Biol Chem. 1967 Mar 10;242(5):1044–1052. [PubMed] [Google Scholar]
- Tabor C. W., Tabor H. 1,4-Diaminobutane (putrescine), spermidine, and spermine. Annu Rev Biochem. 1976;45:285–306. doi: 10.1146/annurev.bi.45.070176.001441. [DOI] [PubMed] [Google Scholar]
- Tabor C. W., Tabor H., Hafner E. W. Escherichia coli mutants completely deficient in adenosylmethionine decarboxylase and in spermidine biosynthesis. J Biol Chem. 1978 May 25;253(10):3671–3676. [PubMed] [Google Scholar]
- Tabor C. W., Tabor H. Transport systems for 1,4-diaminobutane, spermidine, and spermine in Escherichia coli. J Biol Chem. 1966 Aug 25;241(16):3714–3723. [PubMed] [Google Scholar]
- Tabor H., Tabor C. W. Biosynthesis and metabolism of 1,4-diaminobutane, spermidine, spermine, and related amines. Adv Enzymol Relat Areas Mol Biol. 1972;36:203–268. doi: 10.1002/9780470122815.ch7. [DOI] [PubMed] [Google Scholar]
- Tabor H., Tabor C. W., Irreverre F. Quantitative determination of aliphatic diamines and polyamines by an automated liquid chromatography procedure. Anal Biochem. 1973 Oct;55(2):457–467. doi: 10.1016/0003-2697(73)90136-x. [DOI] [PubMed] [Google Scholar]
- Zappia V., Porta R., Cartenì-Farina M., De Rosa M., Gambacorta A. Polyamine distribution in eukaryotes: occurrence of sym-norm-spermidine and sym-nor-spermine in arthropods. FEBS Lett. 1978 Oct 1;94(1):161–165. doi: 10.1016/0014-5793(78)80928-4. [DOI] [PubMed] [Google Scholar]