Abstract
When Escherichia coli are grown in the presence of 5-fluorouracil, the 5-fluorouracil is incorporated almost exclusively into ribonucleic acid as fluorouridylate. In this study, small but detectable amounts were incorporated into ribonucleic acid as fluorocytidylate and into deoxyribonucleic acid as fluorodeoxyuridylate and fluorodeoxycytidylate. The amount of 5-fluorouracil found in deoxyribonucleic acid as fluorodeoxyuridylate increased 50-fold when the cells were deficient in both deoxyuridine triphosphatase and uracil-deoxyribonucleic acid glycosylase activities. Therefore, the same mechanisms which excluded uracil from deoxyribonucleic acid in vivo also excluded 5-fluorouracil. Even though purified uracil-deoxyribonucleic acid glycosylase excised 5-fluorouracil from deoxyribonucleic acid at only 5% the rate with which it excised uracil, most of the 5-fluorouracil excised from deoxyribonucleic acid in vivo was apparently excised directly by uracil-deoxyribonucleic acid glycosylase rather than by repair initiated by excision of uracil.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bean B., Tomasz A. Inhibitory effects and metabolism of 5-fluoropyrimidine derivatives in pneumococcus. J Bacteriol. 1971 May;106(2):412–420. doi: 10.1128/jb.106.2.412-420.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHAMPE S. P., BENZER S. Reversal of mutant phenotypes by 5-fluorouracil: an approach to nucleotide sequences in messenger-RNA. Proc Natl Acad Sci U S A. 1962 Apr 15;48:532–546. doi: 10.1073/pnas.48.4.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duncan B. K., Rockstroh P. A., Warner H. R. Escherichia coli K-12 mutants deficient in uracil-DNA glycosylase. J Bacteriol. 1978 Jun;134(3):1039–1045. doi: 10.1128/jb.134.3.1039-1045.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedberg E. C., Ganesan A. K., Minton K. N-Glycosidase activity in extracts of Bacillus subtilis and its inhibition after infection with bacteriophage PBS2. J Virol. 1975 Aug;16(2):315–321. doi: 10.1128/jvi.16.2.315-321.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heidelberger C. Fluorinated pyrimidines. Prog Nucleic Acid Res Mol Biol. 1965;4:1–50. doi: 10.1016/s0079-6603(08)60783-7. [DOI] [PubMed] [Google Scholar]
- Herrington M. B., Takahashi I. Mutagenesis of bacteriophage PBS 2. Mutat Res. 1973 Nov;20(2):275–278. doi: 10.1016/0027-5107(73)90198-x. [DOI] [PubMed] [Google Scholar]
- Kaiser I. I., Kwong L. Identification of 5-fluorocytidine in RNA from Escherichia coli grown in the presence of 5-fluorouracil. FEBS Lett. 1973 Jun 1;32(2):281–283. doi: 10.1016/0014-5793(73)80853-1. [DOI] [PubMed] [Google Scholar]
- Larsson A., Reichard P. Enzymatic synthesis of deoxyribonucleotides. X. Reduction of purine ribonucleotides; allosteric behavior and substrate specificity of the enzyme system from Escherichia coli B. J Biol Chem. 1966 Jun 10;241(11):2540–2549. [PubMed] [Google Scholar]
- Lindahl T., Ljungquist S., Siegert W., Nyberg B., Sperens B. DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J Biol Chem. 1977 May 25;252(10):3286–3294. [PubMed] [Google Scholar]
- Lindahl T. New class of enzymes acting on damaged DNA. Nature. 1976 Jan 1;259(5538):64–66. doi: 10.1038/259064a0. [DOI] [PubMed] [Google Scholar]
- Ljungquist S., Lindahl T., Howard-Flanders P. Methyl methane sulfonate-sensitive mutant of Escherichia coli deficient in an endonuclease specific for apurinic sites in deoxyribonucleic acid. J Bacteriol. 1976 May;126(2):646–653. doi: 10.1128/jb.126.2.646-653.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lozeron H. A., Szybalski W. Incorporation of 5-fluorodeoxyuridine into the DNA of Bacillus subtilis phage PBS2 and its radiobiological consequences. J Mol Biol. 1967 Dec 14;30(2):277–290. doi: 10.1016/s0022-2836(67)80039-1. [DOI] [PubMed] [Google Scholar]
- Neuhard J., Thomassen E. Deoxycytidine triphosphate deaminase: identification and function in Salmonella typhimurium. J Bacteriol. 1971 Feb;105(2):657–665. doi: 10.1128/jb.105.2.657-665.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Donovan G. A., Neuhard J. Pyrimidine metabolism in microorganisms. Bacteriol Rev. 1970 Sep;34(3):278–343. doi: 10.1128/br.34.3.278-343.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olivera B. M., Manlapaz-Ramos P., Warner H. R., Duncan B. K. DNA intermediates at the Escherichia coli replication fork. II. Studies using dut and ung mutants in vitro. J Mol Biol. 1979 Mar 5;128(3):265–275. doi: 10.1016/0022-2836(79)90087-1. [DOI] [PubMed] [Google Scholar]
- Price A. R., Frato J. Bacillus subtilis deoxyuridinetriphosphatase and its bacteriophage PBS2-induced inhibitor. J Biol Chem. 1975 Nov 25;250(22):8804–8811. [PubMed] [Google Scholar]
- Price A. R., Warner H. R. Bacteriophage T4-induced deoxycytidine triphosphate-deoxyuridine triphosphate nucleotidohydrolase: its properties and its role during phage infection of Escherichia coli. Virology. 1969 Dec;39(4):882–892. doi: 10.1016/0042-6822(69)90024-5. [DOI] [PubMed] [Google Scholar]
- Shlomai J., Kornberg A. Deoxyuridine triphosphatase of Escherichia coli. Purification, properties, and use as a reagent to reduce uracil incorporation into DNA. J Biol Chem. 1978 May 10;253(9):3305–3312. [PubMed] [Google Scholar]
- Warner H. R., Thompson R. B., Mozer T. J., Duncan B. K. The properties of a bacteriophage T5 mutant unable to induce deoxyuridine 5'-triphosphate nucleotidohydrolase. Synthesis of uracil-containing T5 deoxyribonucleic acid. J Biol Chem. 1979 Aug 25;254(16):7534–7539. [PubMed] [Google Scholar]
- Yajko D. M., Weiss B. Mutations simultaneously affecting endonuclease II and exonuclease III in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Feb;72(2):688–692. doi: 10.1073/pnas.72.2.688. [DOI] [PMC free article] [PubMed] [Google Scholar]