Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Feb;141(2):707–714. doi: 10.1128/jb.141.2.707-714.1980

Characterization and regulation of galactose transport in Neurospora crassa.

J B Rand, E L Tatum
PMCID: PMC293679  PMID: 6444943

Abstract

Two galactose uptake systems were found in the mycelia of Neurospora crassa. In glucose-grown mycelia, galactose was transported by a low-affinity (Km = 400 mM) constitutive system which was distinct from the previously described glucose transport system I (R. P. Schneider and W. R. Wiley, J. Bacteriol. 106:479--486, 1971). In carbon-starved mycelia or mycelia incubated with galactose, a second galactose transport activity appeared which required energy, had a high affinity for galactose (Km = 0.7 mM), and was shown to be the same as glucose transport system II. System II also transported mannose, 2-deoxyglucose, xylose, and talose and is therefore a general monosaccharide transport system. System II was derepressed by carbon starvation, completely repressed by glucose, mannose, and 2-deoxyglucose, and partially repressed by fructose and xylose. Incubation with galactose yielded twice as much activity as starvation. This extra induction by galactose required protein synthesis, and represented an increase in activity of system II rather than the induction of another transport system. Glucose, mannose, and 2-deoxyglucose caused rapid degradation of preexisting system II; fructose and xylose caused a slower degradation of activity.

Full text

PDF
707

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Crocken B., Tatum E. L. Sorbose transport in Neurospora crassa. Biochim Biophys Acta. 1967 Feb 1;135(1):100–105. doi: 10.1016/0005-2736(67)90011-9. [DOI] [PubMed] [Google Scholar]
  2. Crocken B., Tatum E. L. The effect of sorbose on metabolism and morphology of Neurospora. Biochim Biophys Acta. 1968 Feb 1;156(1):1–8. doi: 10.1016/0304-4165(68)90097-4. [DOI] [PubMed] [Google Scholar]
  3. Klingmüller W. Aktive Aufnahme von Zuckern durch Zellen von Neurospora crassa unter Beteiligung eines enzymatischen Systems mit Permease-Eigenschaften II. Z Naturforsch B. 1967 Feb;22(2):188–195. [PubMed] [Google Scholar]
  4. Klingmüller W. Aktive Aufnahme von Zuckern durch Zellen von Neurospora crassa unter Beteiligung eines enzymatischen Systems mit Permeaseeigenschaften I. Z Naturforsch B. 1967 Feb;22(2):181–188. [PubMed] [Google Scholar]
  5. Klingmüller W., Huh H. Sugar transport in neurospora crassa. Eur J Biochem. 1972 Jan 31;25(1):141–146. doi: 10.1111/j.1432-1033.1972.tb01678.x. [DOI] [PubMed] [Google Scholar]
  6. LESTER G., AZZENA D., HECHTER O. Permeability and metabolism of lactose in Neurospora crassa. J Bacteriol. 1962 Aug;84:217–227. doi: 10.1128/jb.84.2.217-227.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LESTER G., STONE D., HECHTER O. The effects of deoxycorticosterone and other steroids on Neurospora crassa. Arch Biochem Biophys. 1958 May;75(1):196–214. doi: 10.1016/0003-9861(58)90410-7. [DOI] [PubMed] [Google Scholar]
  8. Lester G., Hechter O. THE RELATIONSHIP OF SODIUM, POTASSIUM, AND DEOXYCORTICOSTERONE IN NEUROSPORA CRASSA. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1792–1801. doi: 10.1073/pnas.45.12.1792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Neville M. M., Suskind S. R., Roseman S. A derepressible active transport system for glucose in Neurospora crassa. J Biol Chem. 1971 Mar 10;246(5):1294–1301. [PubMed] [Google Scholar]
  10. Scarborough G. A. Sugar transport in Neurospora crassa. II. A second glucose transport system. J Biol Chem. 1970 Aug 10;245(15):3985–3987. [PubMed] [Google Scholar]
  11. Scarborough G. A. Sugar transport in Neurospora crassa. J Biol Chem. 1970 Apr 10;245(7):1694–1698. [PubMed] [Google Scholar]
  12. Schneider R. P., Wiley W. R. Kinetic characteristics of the two glucose transport systems in Neurospora crassa. J Bacteriol. 1971 May;106(2):479–486. doi: 10.1128/jb.106.2.479-486.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schneider R. P., Wiley W. R. Regulation of sugar transport in Neurospora crassa. J Bacteriol. 1971 May;106(2):487–492. doi: 10.1128/jb.106.2.487-492.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schneider R. P., Wiley W. R. Transcription and degradation of messenger ribonucleic acid for a glucose transport system in Neurospora. J Biol Chem. 1971 Aug 10;246(15):4784–4789. [PubMed] [Google Scholar]
  15. Slayman C. L., Slayman C. W. Depolarization of the plasma membrane of Neurospora during active transport of glucose: evidence for a proton-dependent cotransport system. Proc Natl Acad Sci U S A. 1974 May;71(5):1935–1939. doi: 10.1073/pnas.71.5.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wiley W. R., Matchett W. H. Tryptophan transport in Neurospora crassa. II. Metabolic control. J Bacteriol. 1968 Mar;95(3):959–966. doi: 10.1128/jb.95.3.959-966.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES