Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Jan;93(1):40–49. doi: 10.1172/JCI116974

Acidosis during ischemia promotes adenosine triphosphate resynthesis in postischemic rat heart. In vivo regulation of 5'-nucleotidase.

M I Bak 1, J S Ingwall 1
PMCID: PMC293721  PMID: 8282812

Abstract

Capacity for ATP resynthesis during recovery from ischemia or hypoxia is limited to the size of the adenine nucleotide pool, which is determined in part by the activity of cytosolic 5'-nucleotidase (5'-NT): AMP-->adenosine plus inorganic phosphate (Pi). To define in vivo regulation of 5'-NT, we used the tools of 31P nuclear magnetic resonance (NMR), spectroscopy and chemical assay to measure the substrates (AMP), products (Pi, adenosine, and its catabolites), and inhibitors (Pi and H+) of 5'-NT in isolated perfused rat hearts exposed to hypoxia (where pH remains near 7) and no flow, global ischemia (where pH falls to 6.1). We estimated 5'-NT reaction velocity, assessed the relative contributions of Pi and H+ to enzyme inhibition, and defined the consequences of changes in 5'-NT activity on ATP resynthesis after hypoxia and ischemia. We conclude that (a) 5'-NT is activated during hypoxia and early ischemia but is inhibited during prolonged ischemia, (b) H+ (pH < 6.2) is a potent inhibitor of 5'-NT, and (c) differences in AMP accumulation are sufficient to explain the differences in the capacity for net ATP resynthesis in ischemic and hypoxic tissue. These observations have implications for our understanding of heterogeneity of ischemic injury and myocardial protection during ischemia.

Full text

PDF
40

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asimakis G. K., Sandhu G. S., Conti V. R., Sordahl L. A., Zwischenberger J. B. Intermittent ischemia produces a cumulative depletion of mitochondrial adenine nucleotides in the isolated perfused rat heart. Circ Res. 1990 Feb;66(2):302–310. doi: 10.1161/01.res.66.2.302. [DOI] [PubMed] [Google Scholar]
  2. Aversano T., Becker L. C. Persistence of coronary vasodilator reserve despite functionally significant flow reduction. Am J Physiol. 1985 Mar;248(3 Pt 2):H403–H411. doi: 10.1152/ajpheart.1985.248.3.H403. [DOI] [PubMed] [Google Scholar]
  3. Bak M. I., Ingwall J. S. NMR-invisible ATP in heart: fact or fiction? Am J Physiol. 1992 Jun;262(6 Pt 1):E943–E947. doi: 10.1152/ajpendo.1992.262.6.E943. [DOI] [PubMed] [Google Scholar]
  4. Bernard M., Menasche P., Canioni P., Fontanarava E., Grousset C., Piwnica A., Cozzone P. Influence of the pH of cardioplegic solutions on intracellular pH, high-energy phosphates, and postarrest performance. Protective effects of acidotic, glutamate-containing cardioplegic perfusates. J Thorac Cardiovasc Surg. 1985 Aug;90(2):235–242. [PubMed] [Google Scholar]
  5. Bing O. H., Brooks W. W., Messer J. V. Heart muscle viability following hypoxia: protective effect of acidosis. Science. 1973 Jun 22;180(4092):1297–1298. doi: 10.1126/science.180.4092.1297. [DOI] [PubMed] [Google Scholar]
  6. Cobbe S. M., Poole-Wilson P. A. The time of onset and severity of acidosis in myocardial ischaemia. J Mol Cell Cardiol. 1980 Aug;12(8):745–760. doi: 10.1016/0022-2828(80)90077-2. [DOI] [PubMed] [Google Scholar]
  7. Coggins D. L., Flynn A. E., Austin R. E., Jr, Aldea G. S., Muehrcke D., Goto M., Hoffman J. I. Nonuniform loss of regional flow reserve during myocardial ischemia in dogs. Circ Res. 1990 Aug;67(2):253–264. doi: 10.1161/01.res.67.2.253. [DOI] [PubMed] [Google Scholar]
  8. Das A. M., Harris D. A. Regulation of the mitochondrial ATP synthase in intact rat cardiomyocytes. Biochem J. 1990 Mar 1;266(2):355–361. doi: 10.1042/bj2660355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DeBoer L. W., Ingwall J. S., Kloner R. A., Braunwald E. Prolonged derangements of canine myocardial purine metabolism after a brief coronary artery occlusion not associated with anatomic evidence of necrosis. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5471–5475. doi: 10.1073/pnas.77.9.5471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Geisbuhler T., Altschuld R. A., Trewyn R. W., Ansel A. Z., Lamka K., Brierley G. P. Adenine nucleotide metabolism and compartmentalization in isolated adult rat heart cells. Circ Res. 1984 May;54(5):536–546. doi: 10.1161/01.res.54.5.536. [DOI] [PubMed] [Google Scholar]
  11. Harden W. R., 3rd, Barlow C. H., Simson M. B., Harken A. H. Heterogeneity of the coronary microcirculation during low-flow ischemia: a model for the heart in shock. Adv Shock Res. 1980;3:239–250. [PubMed] [Google Scholar]
  12. Harmsen E., de Tombe P. P., de Jong J. W., Achterberg P. W. Enhanced ATP and GTP synthesis from hypoxanthine or inosine after myocardial ischemia. Am J Physiol. 1984 Jan;246(1 Pt 2):H37–H43. doi: 10.1152/ajpheart.1984.246.1.H37. [DOI] [PubMed] [Google Scholar]
  13. He M. X., Gorman M. W., Romig G. D., Meyer R. A., Sparks H. V., Jr Adenosine formation and energy status during hypoperfusion and 2-deoxyglucose infusion. Am J Physiol. 1991 Mar;260(3 Pt 2):H917–H926. doi: 10.1152/ajpheart.1991.260.3.H917. [DOI] [PubMed] [Google Scholar]
  14. Hearse D. J. Oxygen deprivation and early myocardial contractile failure: a reassessment of the possible role of adenosine triphosphate. Am J Cardiol. 1979 Nov;44(6):1115–1121. doi: 10.1016/0002-9149(79)90177-2. [DOI] [PubMed] [Google Scholar]
  15. Hohl C. M., Wimsatt D. K., Brierley G. P., Altschuld R. A. IMP production by ATP-depleted adult rat heart cells. Effects of glycolysis and alpha 1-adrenergic stimulation. Circ Res. 1989 Sep;65(3):754–760. doi: 10.1161/01.res.65.3.754. [DOI] [PubMed] [Google Scholar]
  16. Iannettoni M. D., Bove E. L., Fox M. H., Groh M. A., Bolling S. F., Gallagher K. P. The effect of intramyocardial pH on functional recovery in neonatal hearts receiving St. Thomas' Hospital cardioplegic solution during global ischemia. J Thorac Cardiovasc Surg. 1992 Aug;104(2):333–343. [PubMed] [Google Scholar]
  17. Itoh R., Oka J., Ozasa H. Regulation of rat heart cytosol 5'-nucleotidase by adenylate energy charge. Biochem J. 1986 May 1;235(3):847–851. doi: 10.1042/bj2350847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kammermeier H. Microassay of free and total creatine from tissue extracts by combination of chromatographic and fluorometric methods. Anal Biochem. 1973 Dec;56(2):341–345. doi: 10.1016/0003-2697(73)90199-1. [DOI] [PubMed] [Google Scholar]
  19. Kida M., Fujiwara H., Ishida M., Kawai C., Ohura M., Miura I., Yabuuchi Y. Ischemic preconditioning preserves creatine phosphate and intracellular pH. Circulation. 1991 Dec;84(6):2495–2503. doi: 10.1161/01.cir.84.6.2495. [DOI] [PubMed] [Google Scholar]
  20. Koop A., Piper H. M. Protection of energy status of hypoxic cardiomyocytes by mild acidosis. J Mol Cell Cardiol. 1992 Jan;24(1):55–65. doi: 10.1016/0022-2828(92)91159-3. [DOI] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Lange R., Ingwall J. S., Hale S. L., Alker K. J., Kloner R. A. Effects of recurrent ischemia on myocardial high energy phosphate content in canine hearts. Basic Res Cardiol. 1984 Jul-Aug;79(4):469–478. doi: 10.1007/BF01908148. [DOI] [PubMed] [Google Scholar]
  23. Lange R., Ingwall J., Hale S. L., Alker K. J., Braunwald E., Kloner R. A. Preservation of high-energy phosphates by verapamil in reperfused myocardium. Circulation. 1984 Oct;70(4):734–741. doi: 10.1161/01.cir.70.4.734. [DOI] [PubMed] [Google Scholar]
  24. Lawson J. W., Veech R. L. Effects of pH and free Mg2+ on the Keq of the creatine kinase reaction and other phosphate hydrolyses and phosphate transfer reactions. J Biol Chem. 1979 Jul 25;254(14):6528–6537. [PubMed] [Google Scholar]
  25. Meghji P., Middleton K. M., Newby A. C. Absolute rates of adenosine formation during ischaemia in rat and pigeon hearts. Biochem J. 1988 Feb 1;249(3):695–703. doi: 10.1042/bj2490695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Murry C. E., Jennings R. B., Reimer K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986 Nov;74(5):1124–1136. doi: 10.1161/01.cir.74.5.1124. [DOI] [PubMed] [Google Scholar]
  27. Murry C. E., Richard V. J., Reimer K. A., Jennings R. B. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res. 1990 Apr;66(4):913–931. doi: 10.1161/01.res.66.4.913. [DOI] [PubMed] [Google Scholar]
  28. Nayler W. G., Ferrari R., Poole-Wilson P. A., Yepez C. E. A protective effect of a mild acidosis on hypoxic heart muscle. J Mol Cell Cardiol. 1979 Oct;11(10):1053–1071. doi: 10.1016/0022-2828(79)90394-8. [DOI] [PubMed] [Google Scholar]
  29. Neubauer S., Ingwall J. S. Verapamil attenuates ATP depletion during hypoxia: 31P NMR studies of the isolated rat heart. J Mol Cell Cardiol. 1989 Nov;21(11):1163–1178. doi: 10.1016/0022-2828(89)90693-7. [DOI] [PubMed] [Google Scholar]
  30. Newby A. C. The pigeon heart 5'-nucleotidase responsible for ischaemia-induced adenosine formation. Biochem J. 1988 Jul 1;253(1):123–130. doi: 10.1042/bj2530123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Olsson R. A., Bünger R. Metabolic control of coronary blood flow. Prog Cardiovasc Dis. 1987 Mar-Apr;29(5):369–387. doi: 10.1016/0033-0620(87)90003-x. [DOI] [PubMed] [Google Scholar]
  32. Polimeni P. I., Buraczewski S. I. Expansion of extracellular tracer spaces in the isolated heart perfused with crystalloid solutions: expansion of extracellular space, trans-sarcolemmal leakage, or both? J Mol Cell Cardiol. 1988 Jan;20(1):15–22. doi: 10.1016/s0022-2828(88)80175-5. [DOI] [PubMed] [Google Scholar]
  33. Rouslin W., Erickson J. L., Solaro R. J. Effects of oligomycin and acidosis on rates of ATP depletion in ischemic heart muscle. Am J Physiol. 1986 Mar;250(3 Pt 2):H503–H508. doi: 10.1152/ajpheart.1986.250.3.H503. [DOI] [PubMed] [Google Scholar]
  34. Sabina R. L., Kernstine K. H., Boyd R. L., Holmes E. W., Swain J. L. Metabolism of 5-amino-4-imidazolecarboxamide riboside in cardiac and skeletal muscle. Effects on purine nucleotide synthesis. J Biol Chem. 1982 Sep 10;257(17):10178–10183. [PubMed] [Google Scholar]
  35. Skladanowski A. C., Newby A. C. Partial purification and properties of an AMP-specific soluble 5'-nucleotidase from pigeon heart. Biochem J. 1990 May 15;268(1):117–122. doi: 10.1042/bj2680117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Smolenski R. T., Suitters A., Yacoub M. H. Adenine nucleotide catabolism and adenosine formation in isolated human cardiomyocytes. J Mol Cell Cardiol. 1992 Jan;24(1):91–96. doi: 10.1016/0022-2828(92)91162-x. [DOI] [PubMed] [Google Scholar]
  37. Steenbergen C., Deleeuw G., Barlow C., Chance B., Williamson J. R. Heterogeneity of the hypoxic state in perfused rat heart. Circ Res. 1977 Nov;41(5):606–615. doi: 10.1161/01.res.41.5.606. [DOI] [PubMed] [Google Scholar]
  38. Stromski M. E., Cooper K., Thulin G., Gaudio K. M., Siegel N. J., Shulman R. G. Chemical and functional correlates of postischemic renal ATP levels. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6142–6145. doi: 10.1073/pnas.83.16.6142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Swain J. L., Sabina R. L., McHale P. A., Greenfield J. C., Jr, Holmes E. W. Prolonged myocardial nucleotide depletion after brief ischemia in the open-chest dog. Am J Physiol. 1982 May;242(5):H818–H826. doi: 10.1152/ajpheart.1982.242.5.H818. [DOI] [PubMed] [Google Scholar]
  40. Vary T. C., Angelakos E. T., Schaffer S. W. Relationship between adenine nucleotide metabolism and irreversible ischemic tissue damage in isolated perfused rat heart. Circ Res. 1979 Aug;45(2):218–225. doi: 10.1161/01.res.45.2.218. [DOI] [PubMed] [Google Scholar]
  41. Worku Y., Newby A. C. The mechanism of adenosine production in rat polymorphonuclear leucocytes. Biochem J. 1983 Aug 15;214(2):325–330. doi: 10.1042/bj2140325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zimmer H. G., Trendelenburg C., Kammermeier H., Gerlach E. De novo synthesis of myocardial adenine nucleotides in the rat. Acceleration during recovery from oxygen deficiency. Circ Res. 1973 May;32(5):635–642. doi: 10.1161/01.res.32.5.635. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES