Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Jan;93(1):311–320. doi: 10.1172/JCI116961

Impaired nitric oxide-dependent cyclic guanosine monophosphate generation in glomeruli from diabetic rats. Evidence for protein kinase C-mediated suppression of the cholinergic response.

P A Craven 1, R K Studer 1, F R DeRubertis 1
PMCID: PMC293768  PMID: 7506712

Abstract

Nitric oxide (NO)-dependent cyclic guanosine monophosphate (cGMP) generation was examined in glomeruli isolated from 1-2-wk and 2-mo streptozotocin diabetic (D) and control (C) rats. After 1-2 wk of diabetes, ex vivo basal cGMP generation and cGMP responses to carbamylcholine (CCh) were significantly suppressed in glomeruli from D compared with those from C, whereas cGMP responses to the calcium ionophore A23187 and nitroprusside (NP) did not differ in glomeruli from D vs. those from C. After 2 mo, glomeruli from D did not respond to CCh, and responses to A23187 and NP were suppressed compared with those from C. Differences in basal, CCh, and A23187-responsive cGMP between D and C were abolished by the NO synthetase inhibitor NG-monomethyl-L-arginine. Soluble glomerular guanylate cyclase prepared from either D or C responded indistinguishably to NP, suggesting a role for NO quenching in the suppression of cGMP in intact glomeruli from D. Compared with those from C, glomeruli isolated from D demonstrated increased generation of thromboxane A2 (TXA2) and activation of protein kinase C (PKC). Both the TXA2/endoperoxide receptor antagonist Bay U3405 and inhibitors of PKC activity restored a cGMP response to CCh in glomeruli from D. Conversely, in glomeruli from C, the TXA2/endoperoxide analogue U46619 activated PKC and suppressed the cGMP response to CCh. Both of those actions were blocked by inhibitors of PKC. The results indicate a progressive impairment of NO-dependent cGMP generation in glomeruli from D which may be mediated in part by TXA2 and activation of PKC. This impairment may participate in glomerular injury in diabetes.

Full text

PDF
311

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylis C., Mitruka B., Deng A. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest. 1992 Jul;90(1):278–281. doi: 10.1172/JCI115849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Billiar T. R., Curran R. D., Stuehr D. J., West M. A., Bentz B. G., Simmons R. L. An L-arginine-dependent mechanism mediates Kupffer cell inhibition of hepatocyte protein synthesis in vitro. J Exp Med. 1989 Apr 1;169(4):1467–1472. doi: 10.1084/jem.169.4.1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Bredt D. S., Ferris C. D., Snyder S. H. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J Biol Chem. 1992 Jun 5;267(16):10976–10981. [PubMed] [Google Scholar]
  5. Bruggeman L. A., Horigan E. A., Horikoshi S., Ray P. E., Klotman P. E. Thromboxane stimulates synthesis of extracellular matrix proteins in vitro. Am J Physiol. 1991 Sep;261(3 Pt 2):F488–F494. doi: 10.1152/ajprenal.1991.261.3.F488. [DOI] [PubMed] [Google Scholar]
  6. Bucala R., Tracey K. J., Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest. 1991 Feb;87(2):432–438. doi: 10.1172/JCI115014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cattell V., Cook T., Moncada S. Glomeruli synthesize nitrite in experimental nephrotoxic nephritis. Kidney Int. 1990 Dec;38(6):1056–1060. doi: 10.1038/ki.1990.312. [DOI] [PubMed] [Google Scholar]
  8. Chin J. H., Azhar S., Hoffman B. B. Inactivation of endothelial derived relaxing factor by oxidized lipoproteins. J Clin Invest. 1992 Jan;89(1):10–18. doi: 10.1172/JCI115549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Corbett J. A., Tilton R. G., Chang K., Hasan K. S., Ido Y., Wang J. L., Sweetland M. A., Lancaster J. R., Jr, Williamson J. R., McDaniel M. L. Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes. 1992 Apr;41(4):552–556. doi: 10.2337/diab.41.4.552. [DOI] [PubMed] [Google Scholar]
  10. Craven P. A., Davidson C. M., DeRubertis F. R. Increase in diacylglycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes. 1990 Jun;39(6):667–674. doi: 10.2337/diab.39.6.667. [DOI] [PubMed] [Google Scholar]
  11. Craven P. A., DeRubertis F. R. Cyclic nucleotide metabolism in rat colonic epithelial cells with different proliferative activities. Biochim Biophys Acta. 1981 Aug 17;676(2):155–169. doi: 10.1016/0304-4165(81)90183-5. [DOI] [PubMed] [Google Scholar]
  12. Craven P. A., DeRubertis F. R. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose. J Clin Invest. 1989 May;83(5):1667–1675. doi: 10.1172/JCI114066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Craven P. A., DeRubertis F. R. Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and hemeproteins. Evidence for involvement of the paramagnetic nitrosyl-heme complex in enzyme activation. J Biol Chem. 1978 Dec 10;253(23):8433–8443. [PubMed] [Google Scholar]
  14. Craven P. A., DeRubertis F. R. Role for local prostaglandin and thromboxane production in the regulation of glomerular filtration rate in the rat with streptozocin-induced diabetes. J Lab Clin Med. 1989 Jun;113(6):674–681. [PubMed] [Google Scholar]
  15. Craven P. A., DeRubertis F. R. Suppression of urinary albumin excretion in diabetic rats by 4'(imidazol-1-yl) acetophenone, a selective inhibitor of thromboxane synthesis. J Lab Clin Med. 1990 Oct;116(4):469–478. [PubMed] [Google Scholar]
  16. Craven P. A., Melhem M. F., DeRubertis F. R. Thromboxane in the pathogenesis of glomerular injury in diabetes. Kidney Int. 1992 Oct;42(4):937–946. doi: 10.1038/ki.1992.370. [DOI] [PubMed] [Google Scholar]
  17. DeRubertis F. R., Craven P. A. Contribution of platelet thromboxane production to enhanced urinary excretion and glomerular production of thromboxane and to the pathogenesis of albuminuria in the streptozotocin-diabetic rat. Metabolism. 1992 Jan;41(1):90–96. doi: 10.1016/0026-0495(92)90196-h. [DOI] [PubMed] [Google Scholar]
  18. Hawkins P. T., Michell R. H., Kirk C. J. A simple assay method for determination of the specific radioactivity of the gamma-phosphate group of 32P-labelled ATP. Biochem J. 1983 Mar 15;210(3):717–720. doi: 10.1042/bj2100717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hora K., Oguchi H., Furukawa T., Hora K., Tokunaga S. Effects of a selective thromboxane synthetase inhibitor OKY-046 on experimental diabetic nephropathy. Nephron. 1990;56(3):297–305. doi: 10.1159/000186157. [DOI] [PubMed] [Google Scholar]
  20. Hostetter T. H., Troy J. L., Brenner B. M. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int. 1981 Mar;19(3):410–415. doi: 10.1038/ki.1981.33. [DOI] [PubMed] [Google Scholar]
  21. Hsueh W. A., Anderson P. W. Hypertension, the endothelial cell, and the vascular complications of diabetes mellitus. Hypertension. 1992 Aug;20(2):253–263. doi: 10.1161/01.hyp.20.2.253. [DOI] [PubMed] [Google Scholar]
  22. Ignarro L. J. Endothelium-derived nitric oxide: actions and properties. FASEB J. 1989 Jan;3(1):31–36. doi: 10.1096/fasebj.3.1.2642868. [DOI] [PubMed] [Google Scholar]
  23. Kamata K., Miyata N., Kasuya Y. Impairment of endothelium-dependent relaxation and changes in levels of cyclic GMP in aorta from streptozotocin-induced diabetic rats. Br J Pharmacol. 1989 Jun;97(2):614–618. doi: 10.1111/j.1476-5381.1989.tb11993.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kiff R. J., Gardiner S. M., Compton A. M., Bennett T. The effects of endothelin-1 and NG-nitro-L-arginine methyl ester on regional haemodynamics in conscious rats with streptozotocin-induced diabetes mellitus. Br J Pharmacol. 1991 Jun;103(2):1321–1326. doi: 10.1111/j.1476-5381.1991.tb09787.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Langenstroer P., Pieper G. M. Regulation of spontaneous EDRF release in diabetic rat aorta by oxygen free radicals. Am J Physiol. 1992 Jul;263(1 Pt 2):H257–H265. doi: 10.1152/ajpheart.1992.263.1.H257. [DOI] [PubMed] [Google Scholar]
  27. Langenstroer P., Pieper G. M. Regulation of spontaneous EDRF release in diabetic rat aorta by oxygen free radicals. Am J Physiol. 1992 Jul;263(1 Pt 2):H257–H265. doi: 10.1152/ajpheart.1992.263.1.H257. [DOI] [PubMed] [Google Scholar]
  28. Laurent E., Mockel J., Takazawa K., Erneux C., Dumont J. E. Stimulation of generation of inositol phosphates by carbamoylcholine and its inhibition by phorbol esters and iodide in dog thyroid cells. Biochem J. 1989 Nov 1;263(3):795–801. doi: 10.1042/bj2630795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ledbetter S., Copeland E. J., Noonan D., Vogeli G., Hassell J. R. Altered steady-state mRNA levels of basement membrane proteins in diabetic mouse kidneys and thromboxane synthase inhibition. Diabetes. 1990 Feb;39(2):196–203. doi: 10.2337/diab.39.2.196. [DOI] [PubMed] [Google Scholar]
  30. Lewis M. J., Henderson A. H. A phorbol ester inhibits the release of endothelium-derived relaxing factor. Eur J Pharmacol. 1987 Jun 4;137(2-3):167–171. doi: 10.1016/0014-2999(87)90218-4. [DOI] [PubMed] [Google Scholar]
  31. Lobaugh L. A., Blackshear P. J. Neuropeptide Y stimulation of myosin light chain phosphorylation in cultured aortic smooth muscle cells. J Biol Chem. 1990 Oct 25;265(30):18393–18399. [PubMed] [Google Scholar]
  32. Marsden P. A., Brock T. A., Ballermann B. J. Glomerular endothelial cells respond to calcium-mobilizing agonists with release of EDRF. Am J Physiol. 1990 May;258(5 Pt 2):F1295–F1303. doi: 10.1152/ajprenal.1990.258.5.F1295. [DOI] [PubMed] [Google Scholar]
  33. Menè P., Taranta A., Pugliese F., Cinotti G. A., D'Agostino A. Thromboxane A2 regulates protein synthesis of cultured human mesangial cells. J Lab Clin Med. 1992 Jul;120(1):48–56. [PubMed] [Google Scholar]
  34. Mené P., Dubyak G. R., Abboud H. E., Scarpa A., Dunn M. J. Phospholipase C activation by prostaglandins and thromboxane A2 in cultured mesangial cells. Am J Physiol. 1988 Dec;255(6 Pt 2):F1059–F1069. doi: 10.1152/ajprenal.1988.255.6.F1059. [DOI] [PubMed] [Google Scholar]
  35. Meraji S., Jayakody L., Senaratne M. P., Thomson A. B., Kappagoda T. Endothelium-dependent relaxation in aorta of BB rat. Diabetes. 1987 Aug;36(8):978–981. doi: 10.2337/diab.36.8.978. [DOI] [PubMed] [Google Scholar]
  36. Mundel P., Bachmann S., Bader M., Fischer A., Kummer W., Mayer B., Kriz W. Expression of nitric oxide synthase in kidney macula densa cells. Kidney Int. 1992 Oct;42(4):1017–1019. doi: 10.1038/ki.1992.382. [DOI] [PubMed] [Google Scholar]
  37. Pieper G. M., Mei D. A., Langenstroer P., O'Rourke S. T. Bioassay of endothelium-derived relaxing factor in diabetic rat aorta. Am J Physiol. 1992 Sep;263(3 Pt 2):H676–H680. doi: 10.1152/ajpheart.1992.263.3.H676. [DOI] [PubMed] [Google Scholar]
  38. Radermacher J., Klanke B., Kastner S., Haake G., Schurek H. J., Stolte H. F., Frölich J. C. Effect of arginine depletion on glomerular and tubular kidney function: studies in isolated perfused rat kidneys. Am J Physiol. 1991 Nov;261(5 Pt 2):F779–F786. doi: 10.1152/ajprenal.1991.261.5.F779. [DOI] [PubMed] [Google Scholar]
  39. Remuzzi G., FitzGerald G. A., Patrono C. Thromboxane synthesis and action within the kidney. Kidney Int. 1992 Jun;41(6):1483–1493. doi: 10.1038/ki.1992.217. [DOI] [PubMed] [Google Scholar]
  40. Romero J. C., Lahera V., Salom M. G., Biondi M. L. Role of the endothelium-dependent relaxing factor nitric oxide on renal function. J Am Soc Nephrol. 1992 Mar;2(9):1371–1387. doi: 10.1681/ASN.V291371. [DOI] [PubMed] [Google Scholar]
  41. Rubanyi G. M., Desiderio D., Luisi A., Johns A., Sybertz E. J. Phorbol dibutyrate inhibits release and action of endothelium-derived relaxing factor(s) in canine blood vessels. J Pharmacol Exp Ther. 1989 Jun;249(3):858–863. [PubMed] [Google Scholar]
  42. Salom M. G., Lahera V., Romero J. C. Role of prostaglandins and endothelium-derived relaxing factor on the renal response to acetylcholine. Am J Physiol. 1991 Jan;260(1 Pt 2):F145–F149. doi: 10.1152/ajprenal.1991.260.1.F145. [DOI] [PubMed] [Google Scholar]
  43. Schulz S., Chinkers M., Garbers D. L. The guanylate cyclase/receptor family of proteins. FASEB J. 1989 Jul;3(9):2026–2035. doi: 10.1096/fasebj.3.9.2568301. [DOI] [PubMed] [Google Scholar]
  44. Shultz P. J., Schorer A. E., Raij L. Effects of endothelium-derived relaxing factor and nitric oxide on rat mesangial cells. Am J Physiol. 1990 Jan;258(1 Pt 2):F162–F167. doi: 10.1152/ajprenal.1990.258.1.F162. [DOI] [PubMed] [Google Scholar]
  45. Shultz P. J., Schorer A. E., Raij L. Effects of endothelium-derived relaxing factor and nitric oxide on rat mesangial cells. Am J Physiol. 1990 Jan;258(1 Pt 2):F162–F167. doi: 10.1152/ajprenal.1990.258.1.F162. [DOI] [PubMed] [Google Scholar]
  46. Studer R. K., Craven P. A., DeRubertis F. R. Role for protein kinase C in the mediation of increased fibronectin accumulation by mesangial cells grown in high-glucose medium. Diabetes. 1993 Jan;42(1):118–126. doi: 10.2337/diab.42.1.118. [DOI] [PubMed] [Google Scholar]
  47. Tesfamariam B., Brown M. L., Cohen R. A. Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Invest. 1991 May;87(5):1643–1648. doi: 10.1172/JCI115179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tilton R. G., Chang K., Hasan K. S., Smith S. R., Petrash J. M., Misko T. P., Moore W. M., Currie M. G., Corbett J. A., McDaniel M. L. Prevention of diabetic vascular dysfunction by guanidines. Inhibition of nitric oxide synthase versus advanced glycation end-product formation. Diabetes. 1993 Feb;42(2):221–232. doi: 10.2337/diab.42.2.221. [DOI] [PubMed] [Google Scholar]
  49. Tolins J. P., Raij L. Effects of amino acid infusion on renal hemodynamics. Role of endothelium-derived relaxing factor. Hypertension. 1991 Jun;17(6 Pt 2):1045–1051. doi: 10.1161/01.hyp.17.6.1045. [DOI] [PubMed] [Google Scholar]
  50. Wang Y. X., Brooks D. P., Edwards R. M. Attenuated glomerular cGMP production and renal vasodilation in streptozotocin-induced diabetic rats. Am J Physiol. 1993 May;264(5 Pt 2):R952–R956. doi: 10.1152/ajpregu.1993.264.5.R952. [DOI] [PubMed] [Google Scholar]
  51. White A. A., Karr D. B. Improved two-step method for the assay of adenylate and guanylate cyclase. Anal Biochem. 1978 Apr;85(2):451–460. doi: 10.1016/0003-2697(78)90242-7. [DOI] [PubMed] [Google Scholar]
  52. Zatz R., Dunn B. R., Meyer T. W., Anderson S., Rennke H. G., Brenner B. M. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest. 1986 Jun;77(6):1925–1930. doi: 10.1172/JCI112521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. de Nucci G., Gryglewski R. J., Warner T. D., Vane J. R. Receptor-mediated release of endothelium-derived relaxing factor and prostacyclin from bovine aortic endothelial cells is coupled. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2334–2338. doi: 10.1073/pnas.85.7.2334. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES