Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Mar;141(3):1209–1216. doi: 10.1128/jb.141.3.1209-1216.1980

Physiological roles of glutamine synthetases I and II in ammonium assimilation in Rhizobium sp. 32H1.

R A Ludwig
PMCID: PMC293814  PMID: 6102559

Abstract

The two glutamine synthetases of Rhizobium sp. 32H1 appear to be structurally and functionally distinct. Glutamine synthetase I was reversibly adenylylated, and its synthesis was repressed only twofold by ammonium. When in the unadenylylated configuration, it was the enzyme which allowed the organism to grow, albeit marginally, on ammonium as a nitrogen source. There is no evidence to suggest that the second enzyme, glutamine synthetase II, is regulated by adenylylation. However, this enzyme was repressed at least 50-fold by even low amounts of ammonium. Glutamine synthetase II does not seem to function in ammonium assimilation but rather in purine biosynthesis.

Full text

PDF
1209

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bender R. A., Janssen K. A., Resnick A. D., Blumenberg M., Foor F., Magasanik B. Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J Bacteriol. 1977 Feb;129(2):1001–1009. doi: 10.1128/jb.129.2.1001-1009.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergersen J. F., Turner G. L. Nitrogen fixation by the bacteroid fraction of breis of soybean root nodules. Biochim Biophys Acta. 1967 Aug 29;141(3):507–515. doi: 10.1016/0304-4165(67)90179-1. [DOI] [PubMed] [Google Scholar]
  3. Brenchley J. E., Prival M. J., Magasanik B. Regulation of the synthesis of enzymes responsible for glutamate formation in Klebsiella aerogenes. J Biol Chem. 1973 Sep 10;248(17):6122–6128. [PubMed] [Google Scholar]
  4. Cedar H., Schwartz J. H. The asparagine synthetase of Escherhic coli. I. Biosynthetic role of the enzyme, purification, and characterization of the reaction products. J Biol Chem. 1969 Aug 10;244(15):4112–4121. [PubMed] [Google Scholar]
  5. HARTMAN S. C. THE INTERACTION OF 6-DIAZO-5-OXO-L-NORLEUCINE WITH PHOSPHORIBOSYL PYROPHOSPHATE AMIDOTRANSFERASE. J Biol Chem. 1963 Sep;238:3036–3047. [PubMed] [Google Scholar]
  6. Ludwig R. A. Control of ammonium assimilation in Rhizobium 32H1. J Bacteriol. 1978 Jul;135(1):114–123. doi: 10.1128/jb.135.1.114-123.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ludwig R. A., Signer E. R. Glutamine synthetase and control of nitrogen fixation in Rhizobium. Nature. 1977 May 19;267(5608):245–248. doi: 10.1038/267245a0. [DOI] [PubMed] [Google Scholar]
  8. Prival M. J., Brenchley J. E., Magasanik B. Glutamine synthetase and the regulation of histidase formation in Klebsiella aerogenes. J Biol Chem. 1973 Jun 25;248(12):4334–4344. [PubMed] [Google Scholar]
  9. Resnick A. D., Magasanik B. L-Asparaginase of Klebsiella aerogenes. Activation of its synthesis by glutamine synthetase. J Biol Chem. 1976 May 10;251(9):2722–2728. [PubMed] [Google Scholar]
  10. Tiemeier D. C., Milman G. Chinese hamster liver glutamine synthetase. Purification, physical and biochemical properties. J Biol Chem. 1972 Apr 25;247(8):2272–2277. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES