Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Mar;141(3):1217–1221. doi: 10.1128/jb.141.3.1217-1221.1980

Polymethylpolysaccharide synthesis in an ethionine-resistant mutant of Mycobacterium smegmatis.

D H Maloney, C E Ballou
PMCID: PMC293815  PMID: 7364726

Abstract

Mutants of Mycobacterium smegmatis were selected for resistance to ethionine in an effort to obtain methylation-defective strains that were altered in their ability to make methylmannose polysaccharides (MMP) or methylglucose lipopolysaccharides. Two methods were developed for the detection of MMP in cell extracts to aid in the screening for potential mutants, one a qualitative procedure based on iodine binding by the sample after paper chromatography and the other a quantitative procedure based on fluorimetric titration of the MMP with parinaric acid. An ethionine-resistant mutant was obtained that contained only about 25% of the normal level of S-adenosylmethionine and 10% of the normal level of methionine adenosyltransferase (adenosine 5'-triphosphate:L-methionine S-adenosyltransferase, EC 2.5.1.6) activity. When grown in the presence of 0.1% ethionine, the mutant cells contained about 50% of the wild-type levels of methylglucose lipopolysaccharides but only about 7% of the normal level of MMP (wild-type cells contain about 0.14 mM MMP and the mutant contains about 0.01 mM MMP). The amount of fatty acid synthesis in the ethionine-resistant mutant grown in the presence of ethionine was not dramatically altered although the mutant accumulated more short-chain and less long-chain unsaturated fatty acids than the wild-type cells.

Full text

PDF
1217

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banis R. J., Peterson D. O., Bloch K. Mycobacterium smegmatis fatty acid synthetase. Polysaccharide stimulation of the rate-limiting step. J Biol Chem. 1977 Aug 25;252(16):5740–5744. [PubMed] [Google Scholar]
  2. Bloch K. Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Adv Enzymol Relat Areas Mol Biol. 1977;45:1–84. doi: 10.1002/9780470122907.ch1. [DOI] [PubMed] [Google Scholar]
  3. Cherest H., Surdin-Kerjan Y. S-adenosyl methionine requiring mutants in Saccharomyces cerevisiae: evidences for the existence of two methionine adenosyl transferases. Mol Gen Genet. 1978 Jul 11;163(2):153–167. doi: 10.1007/BF00267406. [DOI] [PubMed] [Google Scholar]
  4. Chou T. C., Lombardini J. B. A rapid assay procedure for ATP:L-methionine adenosyltransferase. Biochim Biophys Acta. 1972 Aug 28;276(2):399–406. doi: 10.1016/0005-2744(72)91000-5. [DOI] [PubMed] [Google Scholar]
  5. Ferguson J. A., Ballou C. E. Biosynthesis of a mycobacterial lipopolysaccharide. Properties of the polysaccharide methyltransferase. J Biol Chem. 1970 Aug 25;245(16):4213–4223. [PubMed] [Google Scholar]
  6. Gray G. R., Ballou C. E. Methylated polysaccharide activators of fatty acid synthase from Mycobacterium phlei. Methods Enzymol. 1975;35:90–95. doi: 10.1016/0076-6879(75)35142-2. [DOI] [PubMed] [Google Scholar]
  7. Greene R. C., Su C. H., Holloway C. T. S-Adenosylmethionine synthetase deficient mutants of Escherichia coli K-12 with impaired control of methionine biosynthesis. Biochem Biophys Res Commun. 1970 Mar 27;38(6):1120–1126. doi: 10.1016/0006-291x(70)90355-4. [DOI] [PubMed] [Google Scholar]
  8. Grellert E., Ballou C. E. Biosynthesis of a mycobacterial lipopolysaccharide. Evidence for an acylpolysaccharide methyltransferase. J Biol Chem. 1972 May 25;247(10):3236–3241. [PubMed] [Google Scholar]
  9. JAMES A. T. Qualitative and quantitative determination of the fatty acids by gas-liquid chromatography. Methods Biochem Anal. 1960;8:1–59. doi: 10.1002/9780470110249.ch1. [DOI] [PubMed] [Google Scholar]
  10. Kerr D. S., Flavin M. The regulation of methionine synthesis and the nature of cystathionine gamma-synthase in Neurospora. J Biol Chem. 1970 Apr 10;245(7):1842–1855. [PubMed] [Google Scholar]
  11. Peterson D. O., Bloch K. Mycobacterium smegmatis fatty acid synthetase. Long chain transacylase chain length specificity. J Biol Chem. 1977 Aug 25;252(16):5735–5739. [PubMed] [Google Scholar]
  12. Saier M. H., Jr, Ballou C. E. The 6-O-methylglucose-containig lipopolysaccharide of Mycobacterium phlei. Complet structure of the polysaccharide. J Biol Chem. 1968 Aug 25;243(16):4332–4341. [PubMed] [Google Scholar]
  13. Shapiro S. K., Ehninger D. J. Methods for the analysis and preparation of adenosylmethionine and adenosylhomocysteine. Anal Biochem. 1966 May;15(2):323–333. doi: 10.1016/0003-2697(66)90038-8. [DOI] [PubMed] [Google Scholar]
  14. Smith W. L., Ballou C. E. The 6-O-methylglucose-containing lipopolysaccharides of Mycobacterium phlei. Locations of the neutral and acidic acyl groups. J Biol Chem. 1973 Oct 25;248(20):7118–7125. [PubMed] [Google Scholar]
  15. WAYNE L. G., DOUBEK J. R., RUSSELL R. L. CLASSIFICATION AND IDENTIFICATION OF MYCOBACTERIA. I. TESTS EMPLOYING TWEEN 80 AS SUBSTRATE. Am Rev Respir Dis. 1964 Oct;90:588–597. doi: 10.1164/arrd.1964.90.4.588. [DOI] [PubMed] [Google Scholar]
  16. Yabusaki K. K., Ballou C. E. Effect of polymethylpolysaccharides on the hydrolysis of palmitoyl coenzyme A by a thioesterase from Mycobacterium smegmatis. J Biol Chem. 1979 Dec 25;254(24):12314–12317. [PubMed] [Google Scholar]
  17. Yabusaki K. K., Ballou C. E. Interaction of mycobacterial polymethylpolysaccharides with paranaric acid and palmitoyl-coenzyme A: structural specificity and monomeric dissociation constants. Proc Natl Acad Sci U S A. 1978 Feb;75(2):691–695. doi: 10.1073/pnas.75.2.691. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES