Abstract
An oxidized nicotinamide adenine dinucleotide phosphate/oxidized nicotinamide adenine dinucleotide (NADP+/NAD+) nonspecific L-glutamate dehydrogenase from Bacteroides thetaiotaomicron was purified 40-fold (NADP+ or NAD+ activity) over crude cell extract by heat treatment, (NH4)2SO2 fractionation, diethylaminoethyl-cellulose, Bio-Gel A 1.5m, and hydroxylapatite chromatography. Both NADP+- and NAD+-dependent activities coeluted from all chromatographic treatments. Moreover, a constant ratio of NADP+/NAD+ specific activities was demonstrated at each purification step. Both activities also comigrated in 6% nondenaturing polyacrylamide gels. Affinity chromatography of the 40-fold-purified enzyme using Procion RED HE-3B gave a preparation containing both NADP+- and NAD+-linked activities which showed a single protein band of 48,5000 molecular weight after sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis. The dual pyridine nucleotide nature of the enzyme was most readily apparent in the oxidative direction. Reductively, the enzyme was 30-fold more active with reduced NADP than with reduced NAD. Nonlinear concave 1/V versus 1/S plots were observed for reduced NADP and NH4Cl. Salts (0.1 M) stimulated the NADP+-linked reaction, inhibited the NAD+-linked reaction, and had little effect on the reduced NADP-dependent reaction. The stimulatory effect of salts (NADP+) was nonspecific, regardless of the anion or cation, whereas the degree of NAD+-linked inhibition decreased in the order to I- greater than Br- greater than Cl- greater than F-. Both NADP+ and NAD+ glutamate dehydrogenase activities were also detected in cell extracts from representative strains of other bacteroides deoxyribonucleic acid homology groups.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benya P. D., Padilla S. R., Nimni M. E. The progeny of rabbit articular chondrocytes synthesize collagen types I and III and type I trimer, but not type II. Verifications by cyanogen bromide peptide analysis. Biochemistry. 1977 Mar 8;16(5):865–872. doi: 10.1021/bi00624a009. [DOI] [PubMed] [Google Scholar]
- Blauer G., Sund H. The effect of ions on the enzymatic properties of beef-liver glutamate dehydrogenase. Biopolymers. 1977 May;16(5):1053–1061. doi: 10.1002/bip.1977.360160508. [DOI] [PubMed] [Google Scholar]
- Chaplin A. E., Huggins A. K., Munday K. A. Ionic effects on glutamate dehydrogenase activity from beef liver, lobster muscle and crab muscle. Comp Biochem Physiol. 1965 Sep;16(1):49–62. doi: 10.1016/0010-406x(65)90163-5. [DOI] [PubMed] [Google Scholar]
- Corman L., Kaplan N. O. Kinetic studies of dogfish liver glutamate dehydrogenase with diphosphopyridine nucleotide and the effect of added salts. J Biol Chem. 1967 Jun 25;242(12):2840–2846. [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Deuel T. F., Stadtman E. R. Some kinetic properties of Bacillus subtilis glutamine synthetase. J Biol Chem. 1970 Oct 25;245(20):5206–5213. [PubMed] [Google Scholar]
- FRIDOVICH I. Inhibition of acetoacetic decarboxylase by anions. The Hofmeister lyotropic series. J Biol Chem. 1963 Feb;238:592–598. [PubMed] [Google Scholar]
- FRIEDEN C. GLUTAMATE DEHYDROGENASE. VI. SURVEY OF PURINE NUCLEOTIDE AND OTHER EFFECTS ON THE ENZYME FROM VARIOUS SOURCES. J Biol Chem. 1965 May;240:2028–2035. [PubMed] [Google Scholar]
- Finegold S. M., Attebery H. R., Sutter V. L. Effect of diet on human fecal flora: comparison of Japanese and American diets. Am J Clin Nutr. 1974 Dec;27(12):1456–1469. doi: 10.1093/ajcn/27.12.1456. [DOI] [PubMed] [Google Scholar]
- Folk J. E., Cole P. W., Mullooly J. P. Mechanim of action of guinea pig liver transglutaminase. V. The hydrolysis reaction. J Biol Chem. 1968 Jan 25;243(2):418–427. [PubMed] [Google Scholar]
- Glass T. L., Holmes W. M., Hylemon P. B., Stellwag E. J. Synthesis of guanosine tetra- and pentaphosphates by the obligately anaerobic bacterium Bacteroides thetaiotaomicron in response to molecular oxygen. J Bacteriol. 1979 Feb;137(2):956–962. doi: 10.1128/jb.137.2.956-962.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johansson B. C., Gest H. Inorganic nitrogen assimilation by the photosynthetic bacterium Rhodopseudomonas capsulata. J Bacteriol. 1976 Nov;128(2):683–688. doi: 10.1128/jb.128.2.683-688.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joyner A. E., Jr, Baldwin R. L. Enzymatic studies of pure cultures of rumen microorganisms. J Bacteriol. 1966 Nov;92(5):1321–1330. doi: 10.1128/jb.92.5.1321-1330.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Juan S. M., Segura E. L., Cazzulo J. J. Purification and some properties of the NADP-linked glutamate dehydrogenase from Trypanosoma cruzi. Int J Biochem. 1978;9(6):395–400. doi: 10.1016/0020-711x(78)90052-6. [DOI] [PubMed] [Google Scholar]
- Kimura K., Miyakawa A., Imai T., Sasakawa T. Glutamate dehydrogenase from Bacillus subtilis PCI 219. I. Purification and properties. J Biochem. 1977 Feb;81(2):467–476. doi: 10.1093/oxfordjournals.jbchem.a131480. [DOI] [PubMed] [Google Scholar]
- Krämer J. NAD and NADP-dependent glutamate dehydrogenase in Hydrogenomonas H 16. Arch Mikrobiol. 1970;71(3):226–234. doi: 10.1007/BF00410156. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Levitzki A., Koshland D. E., Jr Negative cooperativity in regulatory enzymes. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1121–1128. doi: 10.1073/pnas.62.4.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LéJohn H. B., McCrea B. E. Evidence for two species of glutamate dehydrogenases in Thiobacillus novellus. J Bacteriol. 1968 Jan;95(1):87–94. doi: 10.1128/jb.95.1.87-94.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macy J. M., Probst I. The biology of gastrointestinal bacteroides. Annu Rev Microbiol. 1979;33:561–594. doi: 10.1146/annurev.mi.33.100179.003021. [DOI] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Phibbs P. V., Jr, Bernlohr R. W. Purification, properties, and regulation of glutamic dehydrogenase of Bacillus licheniformis. J Bacteriol. 1971 May;106(2):375–385. doi: 10.1128/jb.106.2.375-385.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SANWAL B. D. Diphosphopyridine nucleotide and triphosphopyridine nucleotide linked glutamic dehydrogenases of Fusarium. Arch Biochem Biophys. 1961 May;93:377–386. doi: 10.1016/0003-9861(61)90281-8. [DOI] [PubMed] [Google Scholar]
- SANWAL B. D., LATA M. The occurrence of two different glutamic dehydrogenases in Neurospora. Can J Microbiol. 1961 Jun;7:319–328. doi: 10.1139/m61-039. [DOI] [PubMed] [Google Scholar]
- Shiio I., Ozaki H. Regulation of nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase from Brevibacterium flavum, a glutamate-producing bacterium. J Biochem. 1970 Nov;68(5):633–647. doi: 10.1093/oxfordjournals.jbchem.a129397. [DOI] [PubMed] [Google Scholar]
- Talley D. J., White L. H., Schmidt R. R. Evidence for NADH- and NADPH-specific isozymes of glutamate dehydrogenase and the continuous inducibility of the NADPH-specific isozyme throughout the cell cycle of the eucaryote Chlorella. J Biol Chem. 1972 Dec 25;247(24):7927–7935. [PubMed] [Google Scholar]
- Tyler B. Regulation of the assimilation of nitrogen compounds. Annu Rev Biochem. 1978;47:1127–1162. doi: 10.1146/annurev.bi.47.070178.005403. [DOI] [PubMed] [Google Scholar]
- Varel V. H., Bryant M. P. Nutritional features of Bacteroides fragilis subsp. fragilis. Appl Microbiol. 1974 Aug;28(2):251–257. doi: 10.1128/am.28.2.251-257.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren J. C., Cheatum S. G. Effect of neutral salts on enzyme activity and structure. Biochemistry. 1966 May;5(5):1702–1707. doi: 10.1021/bi00869a036. [DOI] [PubMed] [Google Scholar]
- Warren J. C., Stowring L., Morales M. F. The effect of structure-disrupting ions on the activity of myosin and other enzymes. J Biol Chem. 1966 Jan 25;241(2):309–316. [PubMed] [Google Scholar]
- Watson D. H., Harvey M. J., Dean P. D. The selective retardation of NADP+-dependent dehydrogenases by immobilized procion red HE-3B. Biochem J. 1978 Aug 1;173(2):591–596. doi: 10.1042/bj1730591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber K., Pringle J. R., Osborn M. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol. 1972;26:3–27. doi: 10.1016/s0076-6879(72)26003-7. [DOI] [PubMed] [Google Scholar]
- Yarrison G., Young D. W., Choules G. L. Glutamate dehydrogenase from Mycoplasma laidlawii. J Bacteriol. 1972 May;110(2):494–503. doi: 10.1128/jb.110.2.494-503.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]


