Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Mar;141(3):1450–1453. doi: 10.1128/jb.141.3.1450-1453.1980

Is cyclic guanosine 3',5'-monophosphate a cell cycle regulator?

W R Cook, V F Kalb Jr, A A Peace, R W Bernlohr
PMCID: PMC293853  PMID: 6245071

Abstract

Transient increases in the intracellular level of cyclic guanosine 3',5'-monophosphate have been observed at a periodicity of one generation time in two spoT strains of Escherichia coli and in Bacillus licheniformis.

Full text

PDF
1450

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. An G., Justesen J., Watson R. J., Friesen J. D. Cloning the spoT gene of Escherichia coli: identification of the spoT gene product. J Bacteriol. 1979 Mar;137(3):1100–1110. doi: 10.1128/jb.137.3.1100-1110.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachmann B. J. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev. 1972 Dec;36(4):525–557. doi: 10.1128/br.36.4.525-557.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bernlohr R. W., Haddox M. K., Goldberg N. D. Cyclic guanosine 3':5'-monophosphate in Escherichia coli and Bacillus lichenformis. J Biol Chem. 1974 Jul 10;249(13):4329–4331. [PubMed] [Google Scholar]
  4. De Crombrugghe B., Chen B., Anderson W., Nissley P., Gottesman M., Pastan I., Perlman R. Lac DNA, RNA polymerase and cyclic AMP receptor protein, cyclic AMP, lac repressor and inducer are the essential elements for controlled lac transcription. Nat New Biol. 1971 Jun 2;231(22):139–142. doi: 10.1038/newbio231139a0. [DOI] [PubMed] [Google Scholar]
  5. Goldberg N. D., Haddox M. K. Cyclic GMP metabolism and involvement in biological regulation. Annu Rev Biochem. 1977;46:823–896. doi: 10.1146/annurev.bi.46.070177.004135. [DOI] [PubMed] [Google Scholar]
  6. Gonzalez J. E., Peterkofsky A. Diverse directional changes of cGMP relative to cAMP in E. coli. Biochem Biophys Res Commun. 1975 Nov 3;67(1):190–197. doi: 10.1016/0006-291x(75)90301-0. [DOI] [PubMed] [Google Scholar]
  7. Graves M. G., Dickinson J. R., Swoboda B. E. Cyclic GMP and cyclic GMP phosphodiesterase in the cell cycle of Tetrahymena pyriformis. FEBS Lett. 1976 Oct 15;69(1):165–166. doi: 10.1016/0014-5793(76)80677-1. [DOI] [PubMed] [Google Scholar]
  8. Heinemeyer E. A., Geis M., Richter D. Degradation of guanosine 3'-diphosphate 5'-diphosphate in vitro by the spoT gene product of Escherichia coli. Eur J Biochem. 1978 Aug 15;89(1):125–131. doi: 10.1111/j.1432-1033.1978.tb20904.x. [DOI] [PubMed] [Google Scholar]
  9. Kalb V. F., Jr, Bernlohr R. W. A new spectrophotometric assay for protein in cell extracts. Anal Biochem. 1977 Oct;82(2):362–371. doi: 10.1016/0003-2697(77)90173-7. [DOI] [PubMed] [Google Scholar]
  10. Kaziro Y. Accumulation of cyclic guanosine 3':5'-monophosphate in the culture medium of growing cells of Escherichia coli. Biochem Biophys Res Commun. 1976 Jan 26;68(2):430–435. doi: 10.1016/0006-291x(76)91163-3. [DOI] [PubMed] [Google Scholar]
  11. Lim S. T., Hennecke H., Scott D. B. Effect of cyclic guanosine 3',5'-monophosphate on nitrogen fixation in Rhizobium japonicum. J Bacteriol. 1979 Jul;139(1):256–263. doi: 10.1128/jb.139.1.256-263.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nielsen L. D., Rickenberg H. V. Cyclic AMP phosphodiesterase of Escherichia coli. Methods Enzymol. 1974;38:249–256. doi: 10.1016/0076-6879(74)38039-1. [DOI] [PubMed] [Google Scholar]
  13. Nisseley S. P., Anderson W. B., Gottesman M. E., Perlman R. L., Pastan I. In vitro transcription of the gal operon requires cyclic adenosine monophosphate and cyclic adenosine monophosphate receptor protein. J Biol Chem. 1971 Aug 10;246(15):4671–4678. [PubMed] [Google Scholar]
  14. O'Dea R. F., Bodley J. W., Lin L., Haddox M. K., Goldberg N. D. The measurement of cyclic GMP with Escherichia coli elongation factor Tu. Methods Enzymol. 1974;38:85–90. doi: 10.1016/0076-6879(74)38014-7. [DOI] [PubMed] [Google Scholar]
  15. Perlman R. L., Pastan I. Pleiotropic deficiency of carbohydrate utilization in an adenyl cyclase deficient mutant of Escherichia coli. Biochem Biophys Res Commun. 1969 Sep 24;37(1):151–157. doi: 10.1016/0006-291x(69)90893-6. [DOI] [PubMed] [Google Scholar]
  16. Rudman D., O'Brien M. S., McKinney A. S., Hoffman J. C., Jr, Patterson J. H. Observations on the cyclic nucleotide concentrations in human cerebrospinal fluid. J Clin Endocrinol Metab. 1976 Jun;42(6):1088–1097. doi: 10.1210/jcem-42-6-1088. [DOI] [PubMed] [Google Scholar]
  17. Setlow B., Setlow P. Levels of cyclic GMP in dormant, germinated, and outgrowing spores and growing and sporulating cells of Bacillus megaterium. J Bacteriol. 1978 Oct;136(1):433–436. doi: 10.1128/jb.136.1.433-436.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shibuya M., Takebe Y., Kaziro Y. A possible involvement of cya gene in the synthesis of cyclic guanosine 3':5'-monophosphate in E. coli. Cell. 1977 Oct;12(2):521–528. doi: 10.1016/0092-8674(77)90128-3. [DOI] [PubMed] [Google Scholar]
  19. Silverman R. H., Atherly A. G. The search for guanosine tetraphosphate (ppGpp) and other unusual nucleotides in eucaryotes. Microbiol Rev. 1979 Mar;43(1):27–41. doi: 10.1128/mr.43.1.27-41.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sun I. Y., Shapiro L., Rosen O. M. A specific cyclic guanosine 3':5'-monophosphate-binding protein in Caulobacter crescentus. J Biol Chem. 1975 Aug 10;250(15):6181–6184. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES