Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Apr;142(1):60–68. doi: 10.1128/jb.142.1.60-68.1980

Purification and Characterization of a Specific 3-Deoxy-d-manno-Octulosonate 8-Phosphate Phosphatase from Escherichia coli B

Paul H Ray 1, Charles D Benedict 1
PMCID: PMC293902  PMID: 6246070

Abstract

A phosphatase specific for the hydrolysis of 3-deoxy-d-manno-octulosonate (KDO)-8-phosphate was purified approximately 400-fold from crude extracts of Escherichia coli B. The hydrolysis of KDO-8-phosphate to KDO and inorganic phosphate in crude extracts of E. coli B, grown in phosphate-containing minimal medium, could be accounted for by the enzymatic activity of this specific phosphatase. No other sugar phosphate tested was an alternate substrate or inhibitor of the purified enzyme. KDO-8-phosphate phosphatase was stimulated three- to fourfold by the addition of 1.0 mM Co+ or Mg2+ and to a lesser extent by 1.0 mM Ba2+, Zn2+, and Mn2+. The activity was inhibited by the addition of 1.0 mM ethylenediaminetetraacetic acid, Cu2+, Ca2+, Cd2+, Hg2+, and chloride ions (50% at 0.1 M). The pH optimum was determined to be 5.5 to 6.5 in both tris(hydroxymethyl)aminomethane-acetate and HEPES (N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid) buffer. This specific phosphatase had an isoelectric point of 4.7 to 4.8 and a molecular weight of 80,000 ± 6,000 as determined by molecular sieving and Ferguson analysis. The enzyme appeared to be composed of two identical subunits of 40,000 to 43,000 molecular weight. The apparent Km for KDO-8-phosphate was determined to be 5.8 ± 0.9 × 10−5 M in the presence of 1.0 mM Co2+, 9.1 ± 1 × 10−5 M in the presence of 1.0 mM Mg2+, and 1.0 ± 0.2 × 10−4 M in the absence of added Co2+ or Mg2+.

Full text

PDF
60

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F. Resolution of bacterial proteins by polyacrylamide gel electrophoresis on slabs. Membrane, soluble, and periplasmic fractions. J Biol Chem. 1974 Jan 25;249(2):634–644. [PubMed] [Google Scholar]
  2. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  4. FERGUSON K. A. STARCH-GEL ELECTROPHORESIS--APPLICATION TO THE CLASSIFICATION OF PITUITARY PROTEINS AND POLYPEPTIDES. Metabolism. 1964 Oct;13:SUPPL–SUPPL1002. doi: 10.1016/s0026-0495(64)80018-4. [DOI] [PubMed] [Google Scholar]
  5. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  6. GAREN A., LEVINTHAL C. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta. 1960 Mar 11;38:470–483. doi: 10.1016/0006-3002(60)91282-8. [DOI] [PubMed] [Google Scholar]
  7. HEPPEL L. A., HARKNESS D. R., HILMOE R. J. A study of the substrate specificity and other properties of the alkaline phosphatase of Escherichia coli. J Biol Chem. 1962 Mar;237:841–846. [PubMed] [Google Scholar]
  8. LEVIN D. H., RACKER E. Condensation of arabinose 5-phosphate and phosphorylenol pyruvate by 2-keto-3-deoxy-8-phosphooctonic acid synthetase. J Biol Chem. 1959 Oct;234:2532–2539. [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Lazdunski C., Petitclerc C., Chappelet D., Lazdunski M. On the mechanism of the Zn2+ and Co2+-alkaline phosphatase of E. coli. Number of sites and anticooperativity. Biochem Biophys Res Commun. 1969 Nov 20;37(5):744–749. doi: 10.1016/0006-291x(69)90954-1. [DOI] [PubMed] [Google Scholar]
  12. Lehmann V., Rupprecht E., Osborn M. J. Isolation of mutants conditionally blocked in the biosynthesis of the 3-deoxy-D-manno-octulosonic-acid--lipid-A part of lipopolysaccharides derived from Salmonella typhimurium. Eur J Biochem. 1977 Jun 1;76(1):41–49. doi: 10.1111/j.1432-1033.1977.tb11568.x. [DOI] [PubMed] [Google Scholar]
  13. Lim R., Cohen S. S. D-phosphoarabinoisomerase and D-ribulokinase in Escherichia coli. J Biol Chem. 1966 Oct 10;241(19):4304–4315. [PubMed] [Google Scholar]
  14. Munson R. S., Jr, Rasmussen N. S., Osborn M. J. Biosynthesis of lipid A. Enzymatic incorporation of 3-deoxy-D-mannooctulosonate into a precursor of lipid A in Salmonella typhimurium. J Biol Chem. 1978 Mar 10;253(5):1503–1511. [PubMed] [Google Scholar]
  15. OSBORN M. J. STUDIES ON THE GRAM-NEGATIVE CELL WALL. I. EVIDENCE FOR THE ROLE OF 2-KETO- 3-DEOXYOCTONATE IN THE LIPOPOLYSACCHARIDE OF SALMONELLA TYPHIMURIUM. Proc Natl Acad Sci U S A. 1963 Sep;50:499–506. doi: 10.1073/pnas.50.3.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. ROSEMAN S. Enzymatic synthesis of cytidine 5'-mono-phospho-sialic acids. Proc Natl Acad Sci U S A. 1962 Mar 15;48:437–441. doi: 10.1073/pnas.48.3.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ray P. H. Purification and characterization of 3-deoxy-D-manno-octulosonate 8-phosphate synthetase from Escherichia coli. J Bacteriol. 1980 Feb;141(2):635–644. doi: 10.1128/jb.141.2.635-644.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rick P. D., Fung L. W., Ho C., Osborn M. J. Lipid A mutants of Salmonella typhimurium. Purification and characterization of a lipid A precursor produced by a mutant in 3-deoxy-D-mannooctulosonate-8-phosphate synthetase. J Biol Chem. 1977 Jul 25;252(14):4904–4912. [PubMed] [Google Scholar]
  19. Rick P. D., Osborn M. J. Isolation of a mutant of Salmonella typhimurium dependent on D-arabinose-5-phosphate for growth and synthesis of 3-deoxy-D-mannoctulosonate (ketodeoxyoctonate). Proc Natl Acad Sci U S A. 1972 Dec;69(12):3756–3760. doi: 10.1073/pnas.69.12.3756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rick P. D., Osborn M. J. Lipid A mutants of Salmonella typhimurium. Characterization of a conditional lethal mutant in 3-deoxy-D-mannooctulosonate-8-phosphate synthetase. J Biol Chem. 1977 Jul 25;252(14):4895–4903. [PubMed] [Google Scholar]
  21. Rodbard D., Chrambach A. Estimation of molecular radius, free mobility, and valence using polyacylamide gel electrophoresis. Anal Biochem. 1971 Mar;40(1):95–134. doi: 10.1016/0003-2697(71)90086-8. [DOI] [PubMed] [Google Scholar]
  22. VOLK W. A. The enzymatic formation of D-arabinose 5-phosphate from L-arabinose and adenosine triphosphate by Propionibacterium pentosaceum. J Biol Chem. 1959 Aug;234(8):1931–1936. [PubMed] [Google Scholar]
  23. WEISSBACH A., HURWITZ J. The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. I. Identification. J Biol Chem. 1959 Apr;234(4):705–709. [PubMed] [Google Scholar]
  24. de Silva A. O., Fraenkel D. G. The 6-phosphogluconate dehydrogenase reaction in Escherichia coli. J Biol Chem. 1979 Oct 25;254(20):10237–10242. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES