Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Apr;142(1):131–137. doi: 10.1128/jb.142.1.131-137.1980

Glutamic acid codon suppressors derived from a unique species of glycine transfer ribonucleic acid.

E J Murgola, J E Bryant
PMCID: PMC293916  PMID: 6154684

Abstract

In this paper we describe the successful isolation of glyT-derived GAA suppressors. A glyT+ strain containing glyV55, the gene for a GGA/G-reading, methane sulfonate and hydroxylamine. The cells were plated to select for reversal of auxotrophy due to a trpA(GAA211) mutation. With either mutagen, greater than 85% of the prototrophs obtained were due to suppressors of the trpA mutation. Approximately 12% of the ethyl methane sulfonate-induced and 37% of the hydroxylamine-induced suppressors were shown to be about 25% cotranscucible with metB, as is glyT. The transfer ribonucleic acid from four metB-linked suppressor strains (two from each mutagen) was examined by reversed-phase column (RPC-5) chromatography. In all four cases, the glycyl-transfer ribonucleic acid profile displayed an alteration of glyT transfer ribonucleic acid. All four suppressors responded to GAG in addition to GAA but did not suppress the known mutant codons of several other trpA mutants. Other properties are discussed, along with possible reasons for our success in obtaining these suppressors.

Full text

PDF
131

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN M. K., YANOFSKY C. A BIOCHEMICAL AND GENETIC STUDY OF REVERSION WITH THE A-GENE A-PROTEIN SYSTEM OF ESCHERICHIA COLI TRYPTOPHAN SYNTHETASE. Genetics. 1963 Aug;48:1065–1083. doi: 10.1093/genetics/48.8.1065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carbon J., Squires C., Hill C. W. Glycine transfer RNA of Escherichia coli. II. Impaired GGA-recognition in strains containing a genetically altered transfer RNA; reversal by a secondary suppressor mutation. J Mol Biol. 1970 Sep 28;52(3):571–584. doi: 10.1016/0022-2836(70)90420-1. [DOI] [PubMed] [Google Scholar]
  3. Coukell M. B., Yanofsky C. Influence of chromosome structure on the frequency of tonB trp deletions in Escherichia coli. J Bacteriol. 1971 Mar;105(3):864–872. doi: 10.1128/jb.105.3.864-872.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hill C. W., Combriato G., Dolph W. Three different missense suppressor mutations affecting the tRNA GGG Gly species of Escherichia coli. J Bacteriol. 1974 Feb;117(2):351–359. doi: 10.1128/jb.117.2.351-359.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hill C. W., Combriato G. Genetic duplications induced at very high frequency by ultraviolet irradiation in Escherichia coli. Mol Gen Genet. 1973 Dec 31;127(3):197–214. doi: 10.1007/BF00333760. [DOI] [PubMed] [Google Scholar]
  6. Murgola E. J., Adelberg E. A. Streptomycin-suppressible lethal mutations in Escherichia coli. J Bacteriol. 1970 Jul;103(1):20–26. doi: 10.1128/jb.103.1.20-26.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Murgola E. J., Prather N. E., Hadley K. H. Variations among glyV-derived glycine tRNA suppressors of glutamic acid codons. J Bacteriol. 1978 Jun;134(3):801–807. doi: 10.1128/jb.134.3.801-807.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Murgola E. J., Yanofsky C. Selection for new amino acids at position 211 of the tryptophan synthetase alpha chain of Escherichia coli. J Mol Biol. 1974 Jul 15;86(4):775–784. doi: 10.1016/0022-2836(74)90353-2. [DOI] [PubMed] [Google Scholar]
  9. Murgola E. J., Yanofsky C. Suppression of glutamic acid codons by mutant glycine transfer ribonucleic acid. J Bacteriol. 1974 Feb;117(2):439–443. doi: 10.1128/jb.117.2.439-443.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Roberts J. W., Carbon J. Molecular mechanism for missense suppression in E. coli. Nature. 1974 Aug 2;250(465):412–414. doi: 10.1038/250412a0. [DOI] [PubMed] [Google Scholar]
  11. Squires C., Carbon J., Hill C. W. Glycine transfer RNA of Escherichia coli. I. Structural genes for two glycine tRNA species. J Mol Biol. 1970 Sep 28;52(3):557–569. doi: 10.1016/0022-2836(70)90419-5. [DOI] [PubMed] [Google Scholar]
  12. Squires C., Carbon J. Normal and mutant glycine transfer RNAs. Nat New Biol. 1971 Oct 27;233(43):274–277. doi: 10.1038/newbio233274a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES