Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Feb;93(2):799–808. doi: 10.1172/JCI117034

Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model.

V Matkovic 1, T Jelic 1, G M Wardlaw 1, J Z Ilich 1, P K Goel 1, J K Wright 1, M B Andon 1, K T Smith 1, R P Heaney 1
PMCID: PMC293933  PMID: 8113412

Abstract

To determine the timing of peak bone mass and density, we conducted a cross-sectional study of bone mass measurements in 265 premenopausal Caucasian females, aged 8-50 yr. Bone mass and bone mineral density were measured using dual X-ray absorptiometry and single-photon absorptiometry at the spine (anteroposterior, lateral), proximal femur, radius shaft, distal forearm, and the whole body. Bone mass parameters were analyzed using a quadratic regression model and segmented regression models with quadratic-quadratic or quadratic-linear form. The results show that most of the bone mass at multiple skeletal locations will be accumulated by late adolescence. This is particularly notable for bone mineral density of the proximal femur and the vertebral body. Bone mass of the other regions of interest is either no different in women between the age of 18 yr and the menopause or it is maximal in 50-yr-old women, indicating slow but permanent bone accumulation continuing at some sites up to the time of menopause. This gain in bone mass in premenopausal adult women is probably the result of continuous periosteal expansion with age. Since rapid skeletal mineral acquisition at all sites occurs relatively early in life, the exogenous factors which might optimize peak bone mass need to be more precisely identified and characterized.

Full text

PDF
799

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aloia J. F., Vaswani A., Ellis K., Yuen K., Cohn S. H. A model for involutional bone loss. J Lab Clin Med. 1985 Dec;106(6):630–637. [PubMed] [Google Scholar]
  2. Arnold J. S. Amount and quality of trabecular bone in osteoporotic vertebral fractures. Clin Endocrinol Metab. 1973 Jul;2(2):221–238. doi: 10.1016/s0300-595x(73)80041-6. [DOI] [PubMed] [Google Scholar]
  3. Beck T. J., Ruff C. B., Scott W. W., Jr, Plato C. C., Tobin J. D., Quan C. A. Sex differences in geometry of the femoral neck with aging: a structural analysis of bone mineral data. Calcif Tissue Int. 1992 Jan;50(1):24–29. doi: 10.1007/BF00297293. [DOI] [PubMed] [Google Scholar]
  4. Block J. E., Smith R., Glueer C. C., Steiger P., Ettinger B., Genant H. K. Models of spinal trabecular bone loss as determined by quantitative computed tomography. J Bone Miner Res. 1989 Apr;4(2):249–257. doi: 10.1002/jbmr.5650040218. [DOI] [PubMed] [Google Scholar]
  5. Bohr H. H., Schaadt O. P. Structural changes of the femoral shaft with age measured by dual photon absorptiometry. Bone Miner. 1990 Dec;11(3):357–362. doi: 10.1016/0169-6009(90)90031-a. [DOI] [PubMed] [Google Scholar]
  6. Bonjour J. P., Theintz G., Buchs B., Slosman D., Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991 Sep;73(3):555–563. doi: 10.1210/jcem-73-3-555. [DOI] [PubMed] [Google Scholar]
  7. Buchanan J. R., Myers C., Lloyd T., Greer R. B., 3rd Early vertebral trabecular bone loss in normal premenopausal women. J Bone Miner Res. 1988 Oct;3(5):583–587. doi: 10.1002/jbmr.5650030515. [DOI] [PubMed] [Google Scholar]
  8. Cann C. E. Quantitative CT for determination of bone mineral density: a review. Radiology. 1988 Feb;166(2):509–522. doi: 10.1148/radiology.166.2.3275985. [DOI] [PubMed] [Google Scholar]
  9. Christiansen C., Rödbro P., Nielsen C. T. Bone mineral content and estimated total body calcium in normal children and adolescents. Scand J Clin Lab Invest. 1975 Oct;35(6):507–510. [PubMed] [Google Scholar]
  10. Davies K. M., Recker R. R., Stegman M. R., Heaney R. P. Tallness versus shrinkage: do women shrink with age or grow taller with recent birth date? J Bone Miner Res. 1991 Oct;6(10):1115–1120. doi: 10.1002/jbmr.5650061013. [DOI] [PubMed] [Google Scholar]
  11. De Schepper J., Derde M. P., Van den Broeck M., Piepsz A., Jonckheer M. H. Normative data for lumbar spine bone mineral content in children: influence of age, height, weight, and pubertal stage. J Nucl Med. 1991 Feb;32(2):216–220. [PubMed] [Google Scholar]
  12. Dhuper S., Warren M. P., Brooks-Gunn J., Fox R. Effects of hormonal status on bone density in adolescent girls. J Clin Endocrinol Metab. 1990 Nov;71(5):1083–1088. doi: 10.1210/jcem-71-5-1083. [DOI] [PubMed] [Google Scholar]
  13. Drinkwater B. L., Nilson K., Chesnut C. H., 3rd, Bremner W. J., Shainholtz S., Southworth M. B. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med. 1984 Aug 2;311(5):277–281. doi: 10.1056/NEJM198408023110501. [DOI] [PubMed] [Google Scholar]
  14. Duke P. M., Litt I. F., Gross R. T. Adolescents' self-assessment of sexual maturation. Pediatrics. 1980 Dec;66(6):918–920. [PubMed] [Google Scholar]
  15. Elliott J. R., Gilchrist N. L., Wells J. E., Turner J. G., Ayling E., Gillespie W. J., Sainsbury R., Hornblow A., Donald R. A. Effects of age and sex on bone density at the hip and spine in a normal Caucasian New Zealand population. N Z Med J. 1990 Feb 14;103(883):33–36. [PubMed] [Google Scholar]
  16. Epker B. N., Frost H. M. Periosteal appositional bone growth from age two to age seventy in man. A tetracycline evaluation. Anat Rec. 1966 Mar;154(3):573–577. doi: 10.1002/ar.1091540307. [DOI] [PubMed] [Google Scholar]
  17. Ericksen M. F. Some aspects of aging in the lumbar spine. Am J Phys Anthropol. 1976 Nov;45(3 Pt 2):575–580. doi: 10.1002/ajpa.1330450322. [DOI] [PubMed] [Google Scholar]
  18. Frost H. M. The role of changes in mechanical usage set points in the pathogenesis of osteoporosis. J Bone Miner Res. 1992 Mar;7(3):253–261. doi: 10.1002/jbmr.5650070303. [DOI] [PubMed] [Google Scholar]
  19. Gallagher J. C., Goldgar D., Moy A. Total bone calcium in normal women: effect of age and menopause status. J Bone Miner Res. 1987 Dec;2(6):491–496. doi: 10.1002/jbmr.5650020605. [DOI] [PubMed] [Google Scholar]
  20. Garn S. M., Rohmann C. G., Wagner B., Ascoli W. Continuing bone growth throughout life: a general phenomenon. Am J Phys Anthropol. 1967 May;26(3):313–317. doi: 10.1002/ajpa.1330260306. [DOI] [PubMed] [Google Scholar]
  21. Gilsanz V., Gibbens D. T., Carlson M., Boechat M. I., Cann C. E., Schulz E. E. Peak trabecular vertebral density: a comparison of adolescent and adult females. Calcif Tissue Int. 1988 Oct;43(4):260–262. doi: 10.1007/BF02555144. [DOI] [PubMed] [Google Scholar]
  22. Gilsanz V., Gibbens D. T., Roe T. F., Carlson M., Senac M. O., Boechat M. I., Huang H. K., Schulz E. E., Libanati C. R., Cann C. C. Vertebral bone density in children: effect of puberty. Radiology. 1988 Mar;166(3):847–850. doi: 10.1148/radiology.166.3.3340782. [DOI] [PubMed] [Google Scholar]
  23. Glastre C., Braillon P., David L., Cochat P., Meunier P. J., Delmas P. D. Measurement of bone mineral content of the lumbar spine by dual energy x-ray absorptiometry in normal children: correlations with growth parameters. J Clin Endocrinol Metab. 1990 May;70(5):1330–1333. doi: 10.1210/jcem-70-5-1330. [DOI] [PubMed] [Google Scholar]
  24. Gotfredsen A., Hadberg A., Nilas L., Christiansen C. Total body bone mineral in healthy adults. J Lab Clin Med. 1987 Sep;110(3):362–368. [PubMed] [Google Scholar]
  25. Hansson T., Roos B. Age changes in the bone mineral of the lumbar spine in normal women. Calcif Tissue Int. 1986 May;38(5):249–251. doi: 10.1007/BF02556602. [DOI] [PubMed] [Google Scholar]
  26. Hedlund L. R., Gallagher J. C. The effect of age and menopause on bone mineral density of the proximal femur. J Bone Miner Res. 1989 Aug;4(4):639–642. doi: 10.1002/jbmr.5650040423. [DOI] [PubMed] [Google Scholar]
  27. Hui S. L., Slemenda C. W., Johnston C. C., Jr Age and bone mass as predictors of fracture in a prospective study. J Clin Invest. 1988 Jun;81(6):1804–1809. doi: 10.1172/JCI113523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Israel H. Continuing growth in the human cranial skeleton. Arch Oral Biol. 1968 Jan;13(1):133–137. doi: 10.1016/0003-9969(68)90044-7. [DOI] [PubMed] [Google Scholar]
  29. Johnston C. C., Jr, Miller J. Z., Slemenda C. W., Reister T. K., Hui S., Christian J. C., Peacock M. Calcium supplementation and increases in bone mineral density in children. N Engl J Med. 1992 Jul 9;327(2):82–87. doi: 10.1056/NEJM199207093270204. [DOI] [PubMed] [Google Scholar]
  30. Katzman D. K., Bachrach L. K., Carter D. R., Marcus R. Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab. 1991 Dec;73(6):1332–1339. doi: 10.1210/jcem-73-6-1332. [DOI] [PubMed] [Google Scholar]
  31. Khairi M. R., Johnston C. C., Jr What we know--and don't know--about bone loss in the elderly. Geriatrics. 1978 Nov;33(11):67–76. [PubMed] [Google Scholar]
  32. Krabbe S., Christiansen C., Rødbro P., Transbøl I. Effect of puberty on rates of bone growth and mineralisation: with observations in male delayed puberty. Arch Dis Child. 1979 Dec;54(12):950–953. doi: 10.1136/adc.54.12.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kröger H., Kotaniemi A., Vainio P., Alhava E. Bone densitometry of the spine and femur in children by dual-energy x-ray absorptiometry. Bone Miner. 1992 Apr;17(1):75–85. doi: 10.1016/0169-6009(92)90712-m. [DOI] [PubMed] [Google Scholar]
  34. Krølner B., Pors Nielsen S. Bone mineral content of the lumbar spine in normal and osteoporotic women: cross-sectional and longitudinal studies. Clin Sci (Lond) 1982 Mar;62(3):329–336. doi: 10.1042/cs0620329. [DOI] [PubMed] [Google Scholar]
  35. Laitinen K., Välimäki M., Keto P. Bone mineral density measured by dual-energy X-ray absorptiometry in healthy Finnish women. Calcif Tissue Int. 1991 Apr;48(4):224–231. doi: 10.1007/BF02556372. [DOI] [PubMed] [Google Scholar]
  36. Landin L., Nilsson B. E. Forearm bone mineral content in children. Normative data. Acta Paediatr Scand. 1981 Nov;70(6):919–923. doi: 10.1111/j.1651-2227.1981.tb06251.x. [DOI] [PubMed] [Google Scholar]
  37. Lindquist O., Bengtsson C., Hansson T., Jonsson R. Changes in bone mineral content of the axial skeleton in relation to aging and the menopause. Results from a longitudinal population study of women in Gothenburg, Sweden. Scand J Clin Lab Invest. 1983 Jun;43(4):333–338. doi: 10.1080/00365518309168267. [DOI] [PubMed] [Google Scholar]
  38. Lindsay R., Cosman F., Herrington B. S., Himmelstein S. Bone mass and body composition in normal women. J Bone Miner Res. 1992 Jan;7(1):55–63. doi: 10.1002/jbmr.5650070109. [DOI] [PubMed] [Google Scholar]
  39. Lloyd T., Andon M. B., Rollings N., Martel J. K., Landis J. R., Demers L. M., Eggli D. F., Kieselhorst K., Kulin H. E. Calcium supplementation and bone mineral density in adolescent girls. JAMA. 1993 Aug 18;270(7):841–844. [PubMed] [Google Scholar]
  40. Luckey M. M., Meier D. E., Mandeli J. P., DaCosta M. C., Hubbard M. L., Goldsmith S. J. Radial and vertebral bone density in white and black women: evidence for racial differences in premenopausal bone homeostasis. J Clin Endocrinol Metab. 1989 Oct;69(4):762–770. doi: 10.1210/jcem-69-4-762. [DOI] [PubMed] [Google Scholar]
  41. Marcus R., Kosek J., Pfefferbaum A., Horning S. Age-related loss of trabecular bone in premenopausal women: a biopsy study. Calcif Tissue Int. 1983 Jul;35(4-5):406–409. doi: 10.1007/BF02405068. [DOI] [PubMed] [Google Scholar]
  42. Matkovic V. Calcium and peak bone mass. J Intern Med. 1992 Feb;231(2):151–160. doi: 10.1111/j.1365-2796.1992.tb00518.x. [DOI] [PubMed] [Google Scholar]
  43. Matkovic V., Fontana D., Tominac C., Goel P., Chesnut C. H., 3rd Factors that influence peak bone mass formation: a study of calcium balance and the inheritance of bone mass in adolescent females. Am J Clin Nutr. 1990 Nov;52(5):878–888. doi: 10.1093/ajcn/52.5.878. [DOI] [PubMed] [Google Scholar]
  44. Matkovic V., Heaney R. P. Calcium balance during human growth: evidence for threshold behavior. Am J Clin Nutr. 1992 May;55(5):992–996. doi: 10.1093/ajcn/55.5.992. [DOI] [PubMed] [Google Scholar]
  45. Matković V., Kostial K., Simonović I., Buzina R., Brodarec A., Nordin B. E. Bone status and fracture rates in two regions of Yugoslavia. Am J Clin Nutr. 1979 Mar;32(3):540–549. doi: 10.1093/ajcn/32.3.540. [DOI] [PubMed] [Google Scholar]
  46. Mazess R. B., Barden H. S., Drinka P. J., Bauwens S. F., Orwoll E. S., Bell N. H. Influence of age and body weight on spine and femur bone mineral density in U.S. white men. J Bone Miner Res. 1990 Jun;5(6):645–652. doi: 10.1002/jbmr.5650050614. [DOI] [PubMed] [Google Scholar]
  47. Mazess R. B., Barden H. S., Ettinger M., Johnston C., Dawson-Hughes B., Baran D., Powell M., Notelovitz M. Spine and femur density using dual-photon absorptiometry in US white women. Bone Miner. 1987 May;2(3):211–219. [PubMed] [Google Scholar]
  48. Mazess R. B., Cameron J. R. Skeletal growth in school children: maturation and bone mass. Am J Phys Anthropol. 1971 Nov;35(3):399–407. doi: 10.1002/ajpa.1330350319. [DOI] [PubMed] [Google Scholar]
  49. Mazess R. B., Pedersen P., Vetter J., Barden H. S. Bone densitometry of excised vertebrae; anatomical relationships. Calcif Tissue Int. 1991 Jun;48(6):380–386. doi: 10.1007/BF02556450. [DOI] [PubMed] [Google Scholar]
  50. Mazess R. B., Peppler W. W., Chesney R. W., Lange T. A., Lindgren U., Smith E., Jr Total body and regional bone mineral by dual-photon absorptiometry in metabolic bone disease. Calcif Tissue Int. 1984 Jan;36(1):8–13. doi: 10.1007/BF02405287. [DOI] [PubMed] [Google Scholar]
  51. McCormick D. P., Ponder S. W., Fawcett H. D., Palmer J. L. Spinal bone mineral density in 335 normal and obese children and adolescents: evidence for ethnic and sex differences. J Bone Miner Res. 1991 May;6(5):507–513. doi: 10.1002/jbmr.5650060513. [DOI] [PubMed] [Google Scholar]
  52. Meunier P., Courpron P., Edouard C., Bernard J., Bringuier J., Vignon G. Physiological senile involution and pathological rarefaction of bone. Quantitative and comparative histological data. Clin Endocrinol Metab. 1973 Jul;2(2):239–256. doi: 10.1016/s0300-595x(73)80042-8. [DOI] [PubMed] [Google Scholar]
  53. Mosekilde L., Mosekilde L. Sex differences in age-related changes in vertebral body size, density and biomechanical competence in normal individuals. Bone. 1990;11(2):67–73. doi: 10.1016/8756-3282(90)90052-z. [DOI] [PubMed] [Google Scholar]
  54. Newton-John H. F., Morgan D. B. The loss of bone with age, osteoporosis, and fractures. Clin Orthop Relat Res. 1970;71:229–252. [PubMed] [Google Scholar]
  55. Nottestad S. Y., Baumel J. J., Kimmel D. B., Recker R. R., Heaney R. P. The proportion of trabecular bone in human vertebrae. J Bone Miner Res. 1987 Jun;2(3):221–229. doi: 10.1002/jbmr.5650020309. [DOI] [PubMed] [Google Scholar]
  56. Ott S. M. Attainment of peak bone mass. J Clin Endocrinol Metab. 1990 Nov;71(5):1082A–1082C. doi: 10.1210/jcem-71-5-1082. [DOI] [PubMed] [Google Scholar]
  57. Ott S. M., Murano R., Lewellen T. K., Nelp W. B., Chesnut C. M., 3rd Total body calcium by neutron activation analysis in normals and osteoporotic populations: a discriminator of significant bone mass loss. J Lab Clin Med. 1983 Oct;102(4):637–645. [PubMed] [Google Scholar]
  58. Patel D. N., Pettifor J. M., Becker P. J., Grieve C., Leschner K. The effect of ethnic group on appendicular bone mass in children. J Bone Miner Res. 1992 Mar;7(3):263–272. doi: 10.1002/jbmr.5650070304. [DOI] [PubMed] [Google Scholar]
  59. Pocock N. A., Eberl S., Eisman J. A., Yeates M. G., Sambrook P. N., Freund J., Duncan A. Dual-photon bone densitometry in normal Australian women: a cross-sectional study. Med J Aust. 1987 Mar 16;146(6):293–297. doi: 10.5694/j.1326-5377.1987.tb120264.x. [DOI] [PubMed] [Google Scholar]
  60. Prentice A., Shaw J., Laskey M. A., Cole T. J., Fraser D. R. Bone mineral content of British and rural Gambian women aged 18-80+ years. Bone Miner. 1991 Mar;12(3):201–214. doi: 10.1016/0169-6009(91)90033-v. [DOI] [PubMed] [Google Scholar]
  61. Prior J. C., Vigna Y. M., Schechter M. T., Burgess A. E. Spinal bone loss and ovulatory disturbances. N Engl J Med. 1990 Nov 1;323(18):1221–1227. doi: 10.1056/NEJM199011013231801. [DOI] [PubMed] [Google Scholar]
  62. Recker R. R., Davies K. M., Hinders S. M., Heaney R. P., Stegman M. R., Kimmel D. B. Bone gain in young adult women. JAMA. 1992 Nov 4;268(17):2403–2408. [PubMed] [Google Scholar]
  63. Rico H. Bone mass peak and incidence of osteoporosis and the Spanish Civil War. Calcif Tissue Int. 1992 Feb;50(2):104–104. doi: 10.1007/BF00298782. [DOI] [PubMed] [Google Scholar]
  64. Riggs B. L., Wahner H. W., Dunn W. L., Mazess R. B., Offord K. P., Melton L. J., 3rd Differential changes in bone mineral density of the appendicular and axial skeleton with aging: relationship to spinal osteoporosis. J Clin Invest. 1981 Feb;67(2):328–335. doi: 10.1172/JCI110039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Riggs B. L., Wahner H. W., Melton L. J., 3rd, Richelson L. S., Judd H. L., Offord K. P. Rates of bone loss in the appendicular and axial skeletons of women. Evidence of substantial vertebral bone loss before menopause. J Clin Invest. 1986 May;77(5):1487–1491. doi: 10.1172/JCI112462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Rodin A., Murby B., Smith M. A., Caleffi M., Fentiman I., Chapman M. G., Fogelman I. Premenopausal bone loss in the lumbar spine and neck of femur: a study of 225 Caucasian women. Bone. 1990;11(1):1–5. doi: 10.1016/8756-3282(90)90064-6. [DOI] [PubMed] [Google Scholar]
  67. Rosenthal D. I., Mayo-Smith W., Hayes C. W., Khurana J. S., Biller B. M., Neer R. M., Klibanski A. Age and bone mass in premenopausal women. J Bone Miner Res. 1989 Aug;4(4):533–538. doi: 10.1002/jbmr.5650040412. [DOI] [PubMed] [Google Scholar]
  68. Ruegsegger P., Dambacher M. A., Ruegsegger E., Fischer J. A., Anliker M. Bone loss in premenopausal and postmenopausal women. A cross-sectional and longitudinal study using quantitative computed tomography. J Bone Joint Surg Am. 1984 Sep;66(7):1015–1023. [PubMed] [Google Scholar]
  69. SMITH R. W., Jr, WALKER R. R. FEMORAL EXPANSION IN AGING WOMEN: IMPLICATIONS FOR OSTEOPOROSIS AND FRACTURES. Science. 1964 Jul 10;145(3628):156–157. doi: 10.1126/science.145.3628.156. [DOI] [PubMed] [Google Scholar]
  70. Schaadt O., Bohr H. Different trends of age-related diminution of bone mineral content in the lumbar spine, femoral neck, and femoral shaft in women. Calcif Tissue Int. 1988 Feb;42(2):71–76. doi: 10.1007/BF02556337. [DOI] [PubMed] [Google Scholar]
  71. Sentipal J. M., Wardlaw G. M., Mahan J., Matkovic V. Influence of calcium intake and growth indexes on vertebral bone mineral density in young females. Am J Clin Nutr. 1991 Aug;54(2):425–428. doi: 10.1093/ajcn/54.2.425. [DOI] [PubMed] [Google Scholar]
  72. Singh M., Nagrath A. R., Maini P. S. Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am. 1970 Apr;52(3):457–467. [PubMed] [Google Scholar]
  73. Slemenda C. W., Miller J. Z., Hui S. L., Reister T. K., Johnston C. C., Jr Role of physical activity in the development of skeletal mass in children. J Bone Miner Res. 1991 Nov;6(11):1227–1233. doi: 10.1002/jbmr.5650061113. [DOI] [PubMed] [Google Scholar]
  74. Southard R. N., Morris J. D., Mahan J. D., Hayes J. R., Torch M. A., Sommer A., Zipf W. B. Bone mass in healthy children: measurement with quantitative DXA. Radiology. 1991 Jun;179(3):735–738. doi: 10.1148/radiology.179.3.2027984. [DOI] [PubMed] [Google Scholar]
  75. Sowers M., Kshirsagar A., Crutchfield M., Updike S. Body composition, age and femoral bone mass of young adult women. Ann Epidemiol. 1991 Feb;1(3):245–254. doi: 10.1016/1047-2797(91)90003-u. [DOI] [PubMed] [Google Scholar]
  76. Talmage R. V., Stinnett S. S., Landwehr J. T., Vincent L. M., McCartney W. H. Age-related loss of bone mineral density in non-athletic and athletic women. Bone Miner. 1986 Apr;1(2):115–125. [PubMed] [Google Scholar]
  77. Theintz G., Buchs B., Rizzoli R., Slosman D., Clavien H., Sizonenko P. C., Bonjour J. P. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992 Oct;75(4):1060–1065. doi: 10.1210/jcem.75.4.1400871. [DOI] [PubMed] [Google Scholar]
  78. Trotter M., Hixon B. B. Sequential changes in weight, density, and percentage ash weight of human skeletons from an early fetal period through old age. Anat Rec. 1974 May;179(1):1–18. doi: 10.1002/ar.1091790102. [DOI] [PubMed] [Google Scholar]
  79. Weaver J. K., Chalmers J. Cancellous bone: its strength and changes with aging and an evaluation of some methods for measuring its mineral content. J Bone Joint Surg Am. 1966 Mar;48(2):289–298. [PubMed] [Google Scholar]
  80. White C. M., Hergenroeder A. C., Klish W. J. Bone mineral density in 15- to 21-year-old eumenorrheic and amenorrheic subjects. Am J Dis Child. 1992 Jan;146(1):31–35. doi: 10.1001/archpedi.1992.02160130033016. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES