Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Apr;142(1):335–338. doi: 10.1128/jb.142.1.335-338.1980

Nitrous acid damage to duplex deoxyribonucleic acid: distinction between deamination of cytosine residues and a novel mutational lesion.

A D Frankel, B K Duncan, P E Hartman
PMCID: PMC293965  PMID: 6989809

Abstract

The rate of nitrous acid deamination of labeled cytosine residues in native Escherichia coli deoxyribonucleic acid was monitored in vitro by release of acid-soluble counts after treatment with uracil deoxyribonucleic acid glycosylase. The reaction exhibited a lag and was not stimulate by several agents previously shown to enhance base substitution mutagenesis during nitrous acid treatment of duplex deoxyribonucleic acid. We conclude that a significant proportion of nitrous acid induced mutagenic lesions are novel lesions and not cytosine deaminations.

Full text

PDF
335

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BECKER E. F., Jr, ZIMMERMAN B. K., GEIDUSCHEK E. P. STRUCTURE AND FUNCTION OF CROSS-LINKED DNA. I. REVERSIBLE DENATURATION AND BACILLUS SUBTILIS TRANSFORMATION. J Mol Biol. 1964 Mar;8:377–391. doi: 10.1016/s0022-2836(64)80202-3. [DOI] [PubMed] [Google Scholar]
  2. Coulondre C., Miller J. H., Farabaugh P. J., Gilbert W. Molecular basis of base substitution hotspots in Escherichia coli. Nature. 1978 Aug 24;274(5673):775–780. doi: 10.1038/274775a0. [DOI] [PubMed] [Google Scholar]
  3. Dubelman S., Shapiro R. A method for the isolation of cross-linked nucleosides from DNA: application to cross-links induced by nitrous acid. Nucleic Acids Res. 1977 Jun;4(6):1815–1827. doi: 10.1093/nar/4.6.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Duncan B. K., Rockstroh P. A., Warner H. R. Escherichia coli K-12 mutants deficient in uracil-DNA glycosylase. J Bacteriol. 1978 Jun;134(3):1039–1045. doi: 10.1128/jb.134.3.1039-1045.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hayakawa H., Kumura K., Sekiguchi M. Role of uracil-DNA glycosylase in the repair of deaminated cytosine residues of DNA in Escherichia coli. J Biochem. 1978 Nov;84(5):1155–1164. doi: 10.1093/oxfordjournals.jbchem.a132231. [DOI] [PubMed] [Google Scholar]
  6. KOTAKA T., BALDWIN R. L. EFFECTS OF NITROUS ACID ON THE DAT COPOLYMER AS A TEMPLATE FOR DNA POLYMERASE. J Mol Biol. 1964 Aug;9:323–339. doi: 10.1016/s0022-2836(64)80210-2. [DOI] [PubMed] [Google Scholar]
  7. Kimball R. F., Boling M. E., Perdue S. W. Evidence that UV-inducible error-prone repair is absent in Haemophilus influenzae Rd, with a discussion of the relation to error-prone repair of alkylating-agent damage. Mutat Res. 1977 Aug;44(2):183–196. doi: 10.1016/0027-5107(77)90076-8. [DOI] [PubMed] [Google Scholar]
  8. Kokatnur M. G., Murray M. L., Correa P. Mutagenic properties of nitrosated spermidine. Proc Soc Exp Biol Med. 1978 May;158(1):85–88. doi: 10.3181/00379727-158-40145. [DOI] [PubMed] [Google Scholar]
  9. Lindahl T. DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision-repair. Prog Nucleic Acid Res Mol Biol. 1979;22:135–192. doi: 10.1016/s0079-6603(08)60800-4. [DOI] [PubMed] [Google Scholar]
  10. Lindahl T., Ljungquist S., Siegert W., Nyberg B., Sperens B. DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J Biol Chem. 1977 May 25;252(10):3286–3294. [PubMed] [Google Scholar]
  11. Murphey-Corb M., Kong H. L., Murray M. L. Interaction of mutagenic spermidine-nitrous acid reaction products with uvr- and recA-dependent repair systems in Salmonella. J Bacteriol. 1980 Apr;142(1):191–195. doi: 10.1128/jb.142.1.191-195.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Oeda K., Shimizu K., Sekiguchi M. An enzyme activity specific for nitrous acid-treated DNA in Escherichia coli. J Biochem. 1978 Nov;84(5):1165–1169. doi: 10.1093/oxfordjournals.jbchem.a132232. [DOI] [PubMed] [Google Scholar]
  13. Prakash L., Sherman F. Mutagenic specificity: reversion of iso-1-cytochrome c mutants of yeast. J Mol Biol. 1973 Sep 5;79(1):65–82. doi: 10.1016/0022-2836(73)90270-2. [DOI] [PubMed] [Google Scholar]
  14. Sadgopal A. The genetic code after the excitement. Adv Genet. 1968;14:325–404. [PubMed] [Google Scholar]
  15. Setlow J. K., Randolph M. L., Boling M. E., Mattingly A., Price G., Gordon M. P. Repair of DNA in Haemophilus influenzae. II. Excision, repair of single-strand breaks, defects in transformation, and host cell modification in UV-sensitive mutants. Cold Spring Harb Symp Quant Biol. 1968;33:209–218. doi: 10.1101/sqb.1968.033.01.024. [DOI] [PubMed] [Google Scholar]
  16. Sherman F., Stewart J. W. Variation of mutagenic action on nonsense mutants at different sites in the iso-1-cytochrome c gene of yeast. Genetics. 1974 Sep;78(1):97–113. doi: 10.1093/genetics/78.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Singer B., Fraenkel-conrat H. Correlation between amino acid exchanges in coat protein of TMV mutants and the nature of the mutagens. Virology. 1974 Aug;60(2):485–490. doi: 10.1016/0042-6822(74)90342-0. [DOI] [PubMed] [Google Scholar]
  18. TESSMAN I., PODDAR R. K., KUMAR S. IDENTIFICATION OF THE ALTERED BASES IN MUTATED SINGLE-STRANDED DNA. I. IN VITRO MUTAGENESIS BY HYDROXYLAMINE, ETHYL METHANESULFONATE AND NITROUS ACID. J Mol Biol. 1964 Aug;9:352–363. doi: 10.1016/s0022-2836(64)80212-6. [DOI] [PubMed] [Google Scholar]
  19. Thomas H. F., Hartman P. E., Mudryj M., Brown D. L. Nitrous acid mutagenesis of duplex DNA as a three-component system. Mutat Res. 1979 Jul;61(2):129–151. doi: 10.1016/0027-5107(79)90121-0. [DOI] [PubMed] [Google Scholar]
  20. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  21. Vanderbilt A. S., Tessman I. Identification of the altered bases in mutated single-stranded DNA. IV. Nitrous acid induction of the transitions guanine to adenine and thymine to cytosine. Genetics. 1970 Sep;66(1):1–10. doi: 10.1093/genetics/66.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weigert M. G., Garen A. Base composition of nonsense codons in E. coli. Evidence from amino-acid substitutions at a tryptophan site in alkaline phosphatase. Nature. 1965 Jun 5;206(988):992–994. doi: 10.1038/206992a0. [DOI] [PubMed] [Google Scholar]
  23. Zimmermann F. Genetic effects of nitrous acid. Mutat Res. 1977;39(2):127–148. doi: 10.1016/0165-1110(77)90019-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES