Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Apr;142(1):347–349. doi: 10.1128/jb.142.1.347-349.1980

uhp-directed, glucose 6-phosphate membrane receptor in Escherichia coli.

P E Goldenbaum, K S Farmer
PMCID: PMC293969  PMID: 6989810

Abstract

Membrane vesicles were characterized for their ability to specifically bind [14C]glucose 6-phosphate. Membranes prepared from a strain carrying a ColE1 uhp hybrid plasmid showed significantly enhanced glucose 6-phosphate binding. It is hypothesized that glucose 6-phosphate binding to these membranes is due to a uhpR-directed, membrane-bound receptor which functions in regulation of the inducible uhpT gene product: the hexose phosphate permease.

Full text

PDF
347

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clarke L., Carbon J. A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell. 1976 Sep;9(1):91–99. doi: 10.1016/0092-8674(76)90055-6. [DOI] [PubMed] [Google Scholar]
  2. Dietz G. W., Heppel L. A. Studies on the uptake of hexose phosphates. II. The induction of the glucose 6-phosphate transport system by exogenous but not by endogenously formed glucose 6-phosphate. J Biol Chem. 1971 May 10;246(9):2885–2890. [PubMed] [Google Scholar]
  3. Dietz G. W., Jr The hexose phosphate transport system of Escherichia coli. Adv Enzymol Relat Areas Mol Biol. 1976;44:237–259. doi: 10.1002/9780470122891.ch7. [DOI] [PubMed] [Google Scholar]
  4. Ezzell J. W., Dobrogosz W. J. Altered hexose transport and salt sensitivity in cyclic adenosine 3',5'-monophosphate-deficient Escherichia coli. J Bacteriol. 1975 Nov;124(2):815–824. doi: 10.1128/jb.124.2.815-824.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goldenbaum P. E., Broman R. L., Dobrogosz W. J. Cyclic 3',5'-adenosine monophosphate and N-acetylglucosamine-6-phosphate as regulatory signals in catabolite repression of the lac operon in Escherichia coli. J Bacteriol. 1970 Sep;103(3):663–670. doi: 10.1128/jb.103.3.663-670.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kadner R. J. Genetic Control of the Transport of Hexose Phosphates in Escherichia coli: Mapping of the uhp Locus. J Bacteriol. 1973 Nov;116(2):764–770. doi: 10.1128/jb.116.2.764-770.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Mével-Ninio M., Yamamoto T. Conversion of active transport vesicles of Escherichia coli into oxidative phosphorylation vesicles. Biochim Biophys Acta. 1974 Jul 25;357(1):63–66. doi: 10.1016/0005-2728(74)90112-1. [DOI] [PubMed] [Google Scholar]
  9. Winkler H. H. Compartmentation in the induction of the hexose-6-phosphate transport system of Escherichia coli. J Bacteriol. 1970 Feb;101(2):470–475. doi: 10.1128/jb.101.2.470-475.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Winkler H. H. Kinetics of exogenous induction of the hexose-6-phosphate transport system of Escherichia coli. J Bacteriol. 1971 Jul;107(1):74–78. doi: 10.1128/jb.107.1.74-78.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES