Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Mar;93(3):1035–1041. doi: 10.1172/JCI117052

Identification of a novel exonic mutation at -13 from 5' splice site causing exon skipping in a girl with mitochondrial acetoacetyl-coenzyme A thiolase deficiency.

T Fukao 1, S Yamaguchi 1, A Wakazono 1, T Orii 1, G Hoganson 1, T Hashimoto 1
PMCID: PMC294030  PMID: 7907600

Abstract

We identified a novel exonic mutation which causes exon skipping in the mitochondrial acetoacetyl-CoA thiolase (T2) gene from a girl with T2 deficiency (GK07). GK07 is a compound heterozygote; the maternal allele has a novel G to T transversion at position 1136 causing Gly379 to Val substitution (G379V) of the T2 precursor. In case of in vivo expression analysis, cells transfected with this mutant cDNA showed no evidence of restored T2 activity. The paternal allele was associated with exon 8 skipping at the cDNA level. At the gene level, a C to T transition causing Gln272 to termination codon (Q272STOP) was identified within exon 8, 13 bp from the 5' splice site of intron 8 in the paternal allele. The mRNA with Q272STOP could not be detected in GK07 fibroblasts, presumably because pre-mRNA with Q272STOP was unstable because of the premature termination. In vivo splicing experiments revealed that the exonic mutation caused partial skipping of exon 8. This substitution was thought to alter the secondary structure of T2 pre-mRNA around exon 8 and thus impede normal splicing. The role of exon sequences in the splicing mechanism is indicated by the exon skipping which occurred with an exonic mutation.

Full text

PDF
1035

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa H., Takiguchi M., Amaya Y., Nagata S., Hayashi H., Mori M. cDNA-derived amino acid sequence of rat mitochondrial 3-oxoacyl-CoA thiolase with no transient presequence: structural relationship with peroxisomal isozyme. EMBO J. 1987 May;6(5):1361–1366. doi: 10.1002/j.1460-2075.1987.tb02376.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cheng J., Fogel-Petrovic M., Maquat L. E. Translation to near the distal end of the penultimate exon is required for normal levels of spliced triosephosphate isomerase mRNA. Mol Cell Biol. 1990 Oct;10(10):5215–5225. doi: 10.1128/mcb.10.10.5215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. Daum R. S., Lamm P. H., Mamer O. A., Scriver C. R. A "new" disorder of isoleucine catabolism. Lancet. 1971 Dec 11;2(7737):1289–1290. doi: 10.1016/s0140-6736(71)90605-2. [DOI] [PubMed] [Google Scholar]
  5. Daum R. S., Scriver C. R., Mamer O. A., Delvin E., Lamm P., Goldman H. An inherited disorder of isoleucine catabolism causing accumulation of alpha-methylacetoacetate and alpha-methyl-beta -hydroxybutyrate, and intermittent metabolic acidosis. Pediatr Res. 1973 Mar;7(3):149–160. doi: 10.1203/00006450-197303000-00007. [DOI] [PubMed] [Google Scholar]
  6. Dequin S., Gloeckler R., Herbert C. J., Boutelet F. Cloning, sequencing and analysis of the yeast S. uvarum ERG10 gene encoding acetoacetyl CoA thiolase. Curr Genet. 1988 Jun;13(6):471–478. doi: 10.1007/BF02427752. [DOI] [PubMed] [Google Scholar]
  7. Efstratiadis A., Kafatos F. C., Maniatis T. The primary structure of rabbit beta-globin mRNA as determined from cloned DNA. Cell. 1977 Apr;10(4):571–585. doi: 10.1016/0092-8674(77)90090-3. [DOI] [PubMed] [Google Scholar]
  8. Eperon L. P., Estibeiro J. P., Eperon I. C. The role of nucleotide sequences in splice site selection in eukaryotic pre-messenger RNA. Nature. 1986 Nov 20;324(6094):280–282. doi: 10.1038/324280a0. [DOI] [PubMed] [Google Scholar]
  9. Fairbairn L. J., Tanner M. J. Complete cDNA sequence of human foetal liver peroxisomal 3-oxoacyl-CoA thiolase. Nucleic Acids Res. 1989 May 11;17(9):3588–3588. doi: 10.1093/nar/17.9.3588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fukao T., Kamijo K., Osumi T., Fujiki Y., Yamaguchi S., Orii T., Hashimoto T. Molecular cloning and nucleotide sequence of cDNA encoding the entire precursor of rat mitochondrial acetoacetyl-CoA thiolase. J Biochem. 1989 Aug;106(2):197–204. doi: 10.1093/oxfordjournals.jbchem.a122832. [DOI] [PubMed] [Google Scholar]
  11. Fukao T., Yamaguchi S., Kano M., Orii T., Fujiki Y., Osumi T., Hashimoto T. Molecular cloning and sequence of the complementary DNA encoding human mitochondrial acetoacetyl-coenzyme A thiolase and study of the variant enzymes in cultured fibroblasts from patients with 3-ketothiolase deficiency. J Clin Invest. 1990 Dec;86(6):2086–2092. doi: 10.1172/JCI114946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fukao T., Yamaguchi S., Orii T., Osumi T., Hashimoto T. Molecular basis of 3-ketothiolase deficiency: identification of an AG to AC substitution at the splice acceptor site of intron 10 causing exon 11 skipping. Biochim Biophys Acta. 1992 Jul 7;1139(3):184–188. doi: 10.1016/0925-4439(92)90132-7. [DOI] [PubMed] [Google Scholar]
  13. Fukao T., Yamaguchi S., Orii T., Schutgens R. B., Osumi T., Hashimoto T. Identification of three mutant alleles of the gene for mitochondrial acetoacetyl-coenzyme A thiolase. A complete analysis of two generations of a family with 3-ketothiolase deficiency. J Clin Invest. 1992 Feb;89(2):474–479. doi: 10.1172/JCI115608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fukao T., Yamaguchi S., Scriver C. R., Dunbar G., Wakazono A., Kano M., Orii T., Hashimoto T. Molecular studies of mitochondrial acetoacetyl-coenzyme A thiolase deficiency in the two original families. Hum Mutat. 1993;2(3):214–220. doi: 10.1002/humu.1380020310. [DOI] [PubMed] [Google Scholar]
  15. Fukao T., Yamaguchi S., Tomatsu S., Orii T., Frauendienst-Egger G., Schrod L., Osumi T., Hashimoto T. Evidence for a structural mutation (347Ala to Thr) in a German family with 3-ketothiolase deficiency. Biochem Biophys Res Commun. 1991 Aug 30;179(1):124–129. doi: 10.1016/0006-291x(91)91343-b. [DOI] [PubMed] [Google Scholar]
  16. Fukao T., Yamaguchi S., Wakazono A., Okamoto H., Orii T., Osumi T., Hashimoto T. Molecular basis of 3-ketothiolase deficiency: detection of gene mutations and expression of mutant cDNAs of mitochondrial acetoacetyl-CoA thiolase. J Inherit Metab Dis. 1992;15(5):815–820. doi: 10.1007/BF01800027. [DOI] [PubMed] [Google Scholar]
  17. Hijikata M., Ishii N., Kagamiyama H., Osumi T., Hashimoto T. Structural analysis of cDNA for rat peroxisomal 3-ketoacyl-CoA thiolase. J Biol Chem. 1987 Jun 15;262(17):8151–8158. [PubMed] [Google Scholar]
  18. Iden P., Middleton B., Robinson B. H., Sherwood W. G., Gibson K. M., Sweetman L., Søvik O. 3-Oxothiolase activities and [14C]-2-methylbutanoic acid incorporation in cultured fibroblasts from 13 cases of suspected 3-oxothiolase deficiency. Pediatr Res. 1990 Nov;28(5):518–522. doi: 10.1203/00006450-199011000-00021. [DOI] [PubMed] [Google Scholar]
  19. Kano M., Fukao T., Yamaguchi S., Orii T., Osumi T., Hashimoto T. Structure and expression of the human mitochondrial acetoacetyl-CoA thiolase-encoding gene. Gene. 1991 Dec 30;109(2):285–290. doi: 10.1016/0378-1119(91)90623-j. [DOI] [PubMed] [Google Scholar]
  20. Ligtenberg M. J., Gennissen A. M., Vos H. L., Hilkens J. A single nucleotide polymorphism in an exon dictates allele dependent differential splicing of episialin mRNA. Nucleic Acids Res. 1991 Jan 25;19(2):297–301. doi: 10.1093/nar/19.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mardon H. J., Sebastio G., Baralle F. E. A role for exon sequences in alternative splicing of the human fibronectin gene. Nucleic Acids Res. 1987 Oct 12;15(19):7725–7733. doi: 10.1093/nar/15.19.7725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Masuno M., Kano M., Fukao T., Yamaguchi S., Osumi T., Hashimoto T., Takahashi E., Hori T., Orii T. Chromosome mapping of the human mitochondrial acetoacetyl-coenzyme A thiolase gene to 11q22.3----q23.1 by fluorescence in situ hybridization. Cytogenet Cell Genet. 1992;60(2):121–122. doi: 10.1159/000133319. [DOI] [PubMed] [Google Scholar]
  23. Nagasawa H., Yamaguchi S., Orii T., Schutgens R. B., Sweetman L., Hashimoto T. Heterogeneity of defects in mitochondrial acetoacetyl-CoA thiolase biosynthesis in fibroblasts from four patients with 3-ketothiolase deficiency. Pediatr Res. 1989 Aug;26(2):145–149. doi: 10.1203/00006450-198908000-00016. [DOI] [PubMed] [Google Scholar]
  24. Niwa H., Yamamura K., Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 1991 Dec 15;108(2):193–199. doi: 10.1016/0378-1119(91)90434-d. [DOI] [PubMed] [Google Scholar]
  25. Peoples O. P., Masamune S., Walsh C. T., Sinskey A. J. Biosynthetic thiolase from Zoogloea ramigera. III. Isolation and characterization of the structural gene. J Biol Chem. 1987 Jan 5;262(1):97–102. [PubMed] [Google Scholar]
  26. Reed R., Maniatis T. A role for exon sequences and splice-site proximity in splice-site selection. Cell. 1986 Aug 29;46(5):681–690. doi: 10.1016/0092-8674(86)90343-0. [DOI] [PubMed] [Google Scholar]
  27. Ricketts M. H., Simons M. J., Parma J., Mercken L., Dong Q., Vassart G. A nonsense mutation causes hereditary goitre in the Afrikander cattle and unmasks alternative splicing of thyroglobulin transcripts. Proc Natl Acad Sci U S A. 1987 May;84(10):3181–3184. doi: 10.1073/pnas.84.10.3181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Robberson B. L., Cote G. J., Berget S. M. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol. 1990 Jan;10(1):84–94. doi: 10.1128/mcb.10.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Somasekhar M. B., Mertz J. E. Exon mutations that affect the choice of splice sites used in processing the SV40 late transcripts. Nucleic Acids Res. 1985 Aug 12;13(15):5591–5609. doi: 10.1093/nar/13.15.5591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Steingrimsdottir H., Rowley G., Dorado G., Cole J., Lehmann A. R. Mutations which alter splicing in the human hypoxanthine-guanine phosphoribosyltransferase gene. Nucleic Acids Res. 1992 Mar 25;20(6):1201–1208. doi: 10.1093/nar/20.6.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Urlaub G., Mitchell P. J., Ciudad C. J., Chasin L. A. Nonsense mutations in the dihydrofolate reductase gene affect RNA processing. Mol Cell Biol. 1989 Jul;9(7):2868–2880. doi: 10.1128/mcb.9.7.2868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wakamatsu N., Kobayashi H., Miyatake T., Tsuji S. A novel exon mutation in the human beta-hexosaminidase beta subunit gene affects 3' splice site selection. J Biol Chem. 1992 Feb 5;267(4):2406–2413. [PubMed] [Google Scholar]
  33. Yamaguchi S., Orii T., Sakura N., Miyazawa S., Hashimoto T. Defect in biosynthesis of mitochondrial acetoacetyl-coenzyme A thiolase in cultured fibroblasts from a boy with 3-ketothiolase deficiency. J Clin Invest. 1988 Mar;81(3):813–817. doi: 10.1172/JCI113388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yang S. Y., Yang X. Y., Healy-Louie G., Schulz H., Elzinga M. Nucleotide sequence of the fadA gene. Primary structure of 3-ketoacyl-coenzyme A thiolase from Escherichia coli and the structural organization of the fadAB operon. J Biol Chem. 1990 Jun 25;265(18):10424–10429. [PubMed] [Google Scholar]
  35. Zuker M., Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981 Jan 10;9(1):133–148. doi: 10.1093/nar/9.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES