Abstract
The concentration of HDL in the blood inversely correlates with the incidence of cardiovascular disease, probably related to the ability of these lipoproteins to efflux cholesterol from vascular cells. it is also possible that HDL affect the production or action of vasoactive peptides implicated in the development of vascular diseases. Therefore, we determined the effects of human HDL on the production and secretion of endothelin-1 (ET-1) from cultured bovine aortic endothelial cells. HDL produced a highly significant stimulation of endothelin secretion (maximum 240% of control), even at very low levels of lipoproteins (1 microgram/ml). HDL also stimulated the translation of ET-1 by twofold in the bovine aortic endothelial cells. In contrast, HDL had no significant effect on steady state mRNA levels, transcript degradation, or transcription. Stimulation of ET-1 secretion by HDL was dependent on protein kinase C activation. Purified apo A-I, the major apoprotein of HDL, increased ET-1 secretion and translation approximately 85% as potently as HDL. Our results indicate that low concentrations of human HDL strongly stimulate the production of ET-1, a powerful vasoconstrictor and mitogen for the vascular smooth muscle cell. We propose that HDL may participate in the regulation of vasomotor tone through this potentially important effect in the vasculature.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bloch K. D., Friedrich S. P., Lee M. E., Eddy R. L., Shows T. B., Quertermous T. Structural organization and chromosomal assignment of the gene encoding endothelin. J Biol Chem. 1989 Jun 25;264(18):10851–10857. [PubMed] [Google Scholar]
- Boulanger C. M., Tanner F. C., Béa M. L., Hahn A. W., Werner A., Lüscher T. F. Oxidized low density lipoproteins induce mRNA expression and release of endothelin from human and porcine endothelium. Circ Res. 1992 Jun;70(6):1191–1197. doi: 10.1161/01.res.70.6.1191. [DOI] [PubMed] [Google Scholar]
- Caughman S. W., Hentze M. W., Rouault T. A., Harford J. B., Klausner R. D. The iron-responsive element is the single element responsible for iron-dependent translational regulation of ferritin biosynthesis. Evidence for function as the binding site for a translational repressor. J Biol Chem. 1988 Dec 15;263(35):19048–19052. [PubMed] [Google Scholar]
- Cleveland D. W., Yen T. J. Multiple determinants of eukaryotic mRNA stability. New Biol. 1989 Nov;1(2):121–126. [PubMed] [Google Scholar]
- Darbon J. M., Tournier J. F., Tauber J. P., Bayard F. Possible role of protein phosphorylation in the mitogenic effect of high density lipoproteins on cultured vascular endothelial cells. J Biol Chem. 1986 Jun 15;261(17):8002–8008. [PubMed] [Google Scholar]
- Glomset J. A. The plasma lecithins:cholesterol acyltransferase reaction. J Lipid Res. 1968 Mar;9(2):155–167. [PubMed] [Google Scholar]
- Goossen B., Caughman S. W., Harford J. B., Klausner R. D., Hentze M. W. Translational repression by a complex between the iron-responsive element of ferritin mRNA and its specific cytoplasmic binding protein is position-dependent in vivo. EMBO J. 1990 Dec;9(12):4127–4133. doi: 10.1002/j.1460-2075.1990.tb07635.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon D. J., Rifkind B. M. High-density lipoprotein--the clinical implications of recent studies. N Engl J Med. 1989 Nov 9;321(19):1311–1316. doi: 10.1056/NEJM198911093211907. [DOI] [PubMed] [Google Scholar]
- Gospodarowicz D., Massoglia S., Cheng J., Fujii D. K. Effect of fibroblast growth factor and lipoproteins on the proliferation of endothelial cells derived from bovine adrenal cortex, brain cortex, and corpus luteum capillaries. J Cell Physiol. 1986 Apr;127(1):121–136. doi: 10.1002/jcp.1041270116. [DOI] [PubMed] [Google Scholar]
- Hahn A. W., Ferracin F., Bühler F. R., Pletscher A. Modulation of gene expression by high and low density lipoproteins in human vascular smooth muscle cells. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1465–1471. doi: 10.1016/0006-291x(91)91058-k. [DOI] [PubMed] [Google Scholar]
- Hentze M. W., Rouault T. A., Harford J. B., Klausner R. D. Oxidation-reduction and the molecular mechanism of a regulatory RNA-protein interaction. Science. 1989 Apr 21;244(4902):357–359. doi: 10.1126/science.2711187. [DOI] [PubMed] [Google Scholar]
- Hu R. M., Levin E. R., Pedram A., Frank H. J. Atrial natriuretic peptide inhibits the production and secretion of endothelin from cultured endothelial cells. Mediation through the C receptor. J Biol Chem. 1992 Aug 25;267(24):17384–17389. [PubMed] [Google Scholar]
- Hu R. M., Levin E. R., Pedram A., Frank H. J. Insulin stimulates production and secretion of endothelin from bovine endothelial cells. Diabetes. 1993 Feb;42(2):351–358. doi: 10.2337/diab.42.2.351. [DOI] [PubMed] [Google Scholar]
- Inoue A., Yanagisawa M., Takuwa Y., Mitsui Y., Kobayashi M., Masaki T. The human preproendothelin-1 gene. Complete nucleotide sequence and regulation of expression. J Biol Chem. 1989 Sep 5;264(25):14954–14959. [PubMed] [Google Scholar]
- Jougasaki M., Kugiyama K., Saito Y., Nakao K., Imura H., Yasue H. Suppression of endothelin-1 secretion by lysophosphatidylcholine in oxidized low density lipoprotein in cultured vascular endothelial cells. Circ Res. 1992 Sep;71(3):614–619. doi: 10.1161/01.res.71.3.614. [DOI] [PubMed] [Google Scholar]
- Kashyap M. L. Basic considerations in the reversal of atherosclerosis: significance of high-density lipoprotein in stimulating reverse cholesterol transport. Am J Cardiol. 1989 May 2;63(16):56H–59H. doi: 10.1016/0002-9149(89)90118-5. [DOI] [PubMed] [Google Scholar]
- Klausner R. D., Harford J. B. cis-trans models for post-transcriptional gene regulation. Science. 1989 Nov 17;246(4932):870–872. doi: 10.1126/science.2683086. [DOI] [PubMed] [Google Scholar]
- Komuro I., Kurihara H., Sugiyama T., Yoshizumi M., Takaku F., Yazaki Y. Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells. FEBS Lett. 1988 Oct 10;238(2):249–252. doi: 10.1016/0014-5793(88)80489-7. [DOI] [PubMed] [Google Scholar]
- Lerman A., Hildebrand F. L., Jr, Margulies K. B., O'Murchu B., Perrella M. A., Heublein D. M., Schwab T. R., Burnett J. C., Jr Endothelin: a new cardiovascular regulatory peptide. Mayo Clin Proc. 1990 Nov;65(11):1441–1455. doi: 10.1016/s0025-6196(12)62168-5. [DOI] [PubMed] [Google Scholar]
- Libby P., Miao P., Ordovas J. M., Schaefer E. J. Lipoproteins increase growth of mitogen-stimulated arterial smooth muscle cells. J Cell Physiol. 1985 Jul;124(1):1–8. doi: 10.1002/jcp.1041240102. [DOI] [PubMed] [Google Scholar]
- Mendez A. J., Oram J. F., Bierman E. L. Protein kinase C as a mediator of high density lipoprotein receptor-dependent efflux of intracellular cholesterol. J Biol Chem. 1991 Jun 5;266(16):10104–10111. [PubMed] [Google Scholar]
- Miyauchi T., Yanagisawa M., Tomizawa T., Sugishita Y., Suzuki N., Fujino M., Ajisaka R., Goto K., Masaki T. Increased plasma concentrations of endothelin-1 and big endothelin-1 in acute myocardial infarction. Lancet. 1989 Jul 1;2(8653):53–54. doi: 10.1016/s0140-6736(89)90303-6. [DOI] [PubMed] [Google Scholar]
- Oppenheimer M. J., Oram J. F., Bierman E. L. Downregulation of high density lipoprotein receptor activity of cultured fibroblasts by platelet-derived growth factor. Arteriosclerosis. 1987 Jul-Aug;7(4):325–332. doi: 10.1161/01.atv.7.4.325. [DOI] [PubMed] [Google Scholar]
- Oppenheimer M. J., Sundquist K., Bierman E. L. Downregulation of high-density lipoprotein receptor in human fibroblasts by insulin and IGF-I. Diabetes. 1989 Jan;38(1):117–122. doi: 10.2337/diab.38.1.117. [DOI] [PubMed] [Google Scholar]
- Oram J. F., Albers J. J., Cheung M. C., Bierman E. L. The effects of subfractions of high density lipoprotein on cholesterol efflux from cultured fibroblasts. Regulation of low density lipoprotein receptor activity. J Biol Chem. 1981 Aug 25;256(16):8348–8356. [PubMed] [Google Scholar]
- Oram J. F., Brinton E. A., Bierman E. L. Regulation of high density lipoprotein receptor activity in cultured human skin fibroblasts and human arterial smooth muscle cells. J Clin Invest. 1983 Nov;72(5):1611–1621. doi: 10.1172/JCI111120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross R. The pathogenesis of atherosclerosis--an update. N Engl J Med. 1986 Feb 20;314(8):488–500. doi: 10.1056/NEJM198602203140806. [DOI] [PubMed] [Google Scholar]
- Schultz J. R., Verstuyft J. G., Gong E. L., Nichols A. V., Rubin E. M. Protein composition determines the anti-atherogenic properties of HDL in transgenic mice. Nature. 1993 Oct 21;365(6448):762–764. doi: 10.1038/365762a0. [DOI] [PubMed] [Google Scholar]
- Schumaker V. N., Puppione D. L. Sequential flotation ultracentrifugation. Methods Enzymol. 1986;128:155–170. doi: 10.1016/0076-6879(86)28066-0. [DOI] [PubMed] [Google Scholar]
- Svetlov S., Nigam S. Calphostin C, a specific protein kinase C inhibitor, activates human neutrophils: effect on phospholipase A2 and aggregation. Biochim Biophys Acta. 1993 May 8;1177(1):75–78. doi: 10.1016/0167-4889(93)90160-q. [DOI] [PubMed] [Google Scholar]
- Tauber J. P., Cheng J., Gospodarowicz D. Effect of high and low density lipoproteins on proliferation of cultured bovine vascular endothelial cells. J Clin Invest. 1980 Oct;66(4):696–708. doi: 10.1172/JCI109907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theret N., Delbart C., Aguie G., Fruchart J. C., Vassaux G., Ailhaud G. Cholesterol efflux from adipose cells is coupled to diacylglycerol production and protein kinase C activation. Biochem Biophys Res Commun. 1990 Dec 31;173(3):1361–1368. doi: 10.1016/s0006-291x(05)80938-6. [DOI] [PubMed] [Google Scholar]
- Vadiveloo P. K., Fidge N. H. The role of apoproteins AI and AII in binding of high-density lipoprotein3 to membranes derived from bovine aortic endothelial cells. Biochem J. 1992 May 15;284(Pt 1):145–151. doi: 10.1042/bj2840145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe T., Suzuki N., Shimamoto N., Fujino M., Imada A. Endothelin in myocardial infarction. Nature. 1990 Mar 8;344(6262):114–114. doi: 10.1038/344114a0. [DOI] [PubMed] [Google Scholar]
- Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
- Yanagisawa M., Masaki T. Molecular biology and biochemistry of the endothelins. Trends Pharmacol Sci. 1989 Sep;10(9):374–378. doi: 10.1016/0165-6147(89)90011-4. [DOI] [PubMed] [Google Scholar]