Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Mar;93(3):1234–1242. doi: 10.1172/JCI117077

Persistence of the fetal pattern of tropoelastin gene expression in severe neonatal bovine pulmonary hypertension.

K R Stenmark 1, A G Durmowicz 1, J D Roby 1, R P Mecham 1, W C Parks 1
PMCID: PMC294075  PMID: 8132763

Abstract

Neonatal hypoxic pulmonary hypertension causes increases and spatial changes in tropoelastin expression in pulmonary arteries. However, it is not clear if this is due to recruitment of quiescent smooth muscle cells (SMC) into an elastin-producing phenotype or persistence of the fetal pattern of tropoelastin gene expression. We evaluated the distribution and relative concentration of tropoelastin mRNA in intralobar pulmonary arteries from late gestation fetuses and in animals exposed to hypobaric hypoxia (430 mmHg) from birth for 1, 3, 7, or 14 d, as well as in age-matched and adult room air-breathing controls. In situ hybridization demonstrated that tropoelastin mRNA was distributed throughout the entire radius of the pulmonary vessel wall in the fetus and newborn calf. By 15 d of age, only cells in the inner third of the media expressed tropoelastin mRNA, and by adulthood no tropoelastin mRNA was detected in the vessel wall. These findings demonstrated that tropoelastin expression shuts off in a spatially specific pattern, moving from the abluminal to the luminal side of the medial in the neonatal pulmonary artery when pressures and resistance are falling. In the aorta of 15-d-old calves, tropoelastin mRNA expression was seen equally throughout the media, indicating tissue-specific regulation of elastin in the neonatal period. In contrast, intralobar pulmonary arteries from calves exposed to hypoxia, which prevented the normal postnatal decline in pulmonary artery pressure, maintained the fetal pattern and levels of tropoelastin mRNA expression at all time points. Thus, rather than causing a recruitment of SMC into an elastin-producing phenotype, neonatal pulmonary hypertension caused a persistence of the fetal pattern of tropoelastin expression in medial SMC. Cell-free translation showed that the same tropoelastin isoforms were made by mRNA from control and hypertensive calves and, unlike the ligamentum nuchae, did not change during the transition from fetal to neonatal life. We conclude that pulmonary hypertension in the neonate perturbs the normal postpartum repression of tropoelastin expression resulting in a persistence of the fetal spacial and isoform patterns of tropoelastin gene expression.

Full text

PDF
1234

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARDRAN G., DAWES G. S., PRICHARD M. M. L., REYNOLDS S. R. M., EYATT D. G. The effect of ventilation of the foetal lungs upon the pulmonary circulation. J Physiol. 1952 Sep;118(1):12–22. doi: 10.1113/jphysiol.1952.sp004769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barrineau L. L., Rich C. B., Przybyla A., Foster J. A. Differential expression of aortic and lung elastin genes during chick embryogenesis. Dev Biol. 1981 Oct 15;87(1):46–51. doi: 10.1016/0012-1606(81)90059-2. [DOI] [PubMed] [Google Scholar]
  3. Bendeck M. P., Langille B. L. Rapid accumulation of elastin and collagen in the aortas of sheep in the immediate perinatal period. Circ Res. 1991 Oct;69(4):1165–1169. doi: 10.1161/01.res.69.4.1165. [DOI] [PubMed] [Google Scholar]
  4. CASSIN S., DAWES G. S., MOTT J. C., ROSS B. B., STRANG L. B. THE VASCULAR RESISTANCE OF THE FOETAL AND NEWLY VENTILATED LUNG OF THE LAMB. J Physiol. 1964 May;171:61–79. doi: 10.1113/jphysiol.1964.sp007361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crouch E. C., Parks W. C., Rosenbaum J. L., Chang D., Whitehouse L., Wu L. J., Stenmark K. R., Orton E. C., Mecham R. P. Regulation of collagen production by medial smooth muscle cells in hypoxic pulmonary hypertension. Am Rev Respir Dis. 1989 Oct;140(4):1045–1051. doi: 10.1164/ajrccm/140.4.1045. [DOI] [PubMed] [Google Scholar]
  6. Davidson J. M., Hill K. E., Alford J. L. Developmental changes in collagen and elastin biosynthesis in the porcine aorta. Dev Biol. 1986 Nov;118(1):103–111. doi: 10.1016/0012-1606(86)90077-1. [DOI] [PubMed] [Google Scholar]
  7. Gonzalez I. L., Gorski J. L., Campen T. J., Dorney D. J., Erickson J. M., Sylvester J. E., Schmickel R. D. Variation among human 28S ribosomal RNA genes. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7666–7670. doi: 10.1073/pnas.82.22.7666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Greenwald S. E., Berry C. L., Haworth S. G. Changes in the distensibility of the intrapulmonary arteries in the normal newborn and growing pig. Cardiovasc Res. 1982 Dec;16(12):716–725. doi: 10.1093/cvr/16.12.716. [DOI] [PubMed] [Google Scholar]
  9. HEATH D., WOOD E. H., DUSHANE J. W., EDWARDS J. E. The structure of the pulmonary trunk at different ages and in cases of pulmonary hypertension and pulmonary stenosis. J Pathol Bacteriol. 1959 Apr;77(2):443–456. doi: 10.1002/path.1700770216. [DOI] [PubMed] [Google Scholar]
  10. Hall S. M., Haworth S. G. Conducting pulmonary arteries: structural adaptation to extrauterine life in the pig. Cardiovasc Res. 1987 Mar;21(3):208–216. doi: 10.1093/cvr/21.3.208. [DOI] [PubMed] [Google Scholar]
  11. Hall S. M., Haworth S. G. Normal adaptation of pulmonary arterial intima to extrauterine life in the pig: ultrastructural studies. J Pathol. 1986 May;149(1):55–66. doi: 10.1002/path.1711490111. [DOI] [PubMed] [Google Scholar]
  12. Haworth S. G., Hislop A. A. Adaptation of the pulmonary circulation to extra-uterine life in the pig and its relevance to the human infant. Cardiovasc Res. 1981 Feb;15(2):108–119. doi: 10.1093/cvr/15.2.108. [DOI] [PubMed] [Google Scholar]
  13. Heim R. A., Pierce R. A., Deak S. B., Riley D. J., Boyd C. D., Stolle C. A. Alternative splicing of rat tropoelastin mRNA is tissue-specific and developmentally regulated. Matrix. 1991 Nov;11(5):359–366. doi: 10.1016/s0934-8832(11)80207-6. [DOI] [PubMed] [Google Scholar]
  14. Keeley F. W., Hussain R. A., Johnson D. J. Pattern of accumulation of elastin and the level of mRNA for elastin in aortic tissue of growing chickens. Arch Biochem Biophys. 1990 Nov 1;282(2):226–232. doi: 10.1016/0003-9861(90)90109-c. [DOI] [PubMed] [Google Scholar]
  15. Keeley F. W., Johnson D. J. The effect of developing hypertension on the synthesis and accumulation of elastin in the aorta of the rat. Biochem Cell Biol. 1986 Jan;64(1):38–43. doi: 10.1139/o86-006. [DOI] [PubMed] [Google Scholar]
  16. Leung D. Y., Glagov S., Mathews M. B. A new in vitro system for studying cell response to mechanical stimulation. Different effects of cyclic stretching and agitation on smooth muscle cell biosynthesis. Exp Cell Res. 1977 Oct 15;109(2):285–298. doi: 10.1016/0014-4827(77)90008-8. [DOI] [PubMed] [Google Scholar]
  17. Leung D. Y., Glagov S., Mathews M. B. Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science. 1976 Feb 6;191(4226):475–477. doi: 10.1126/science.128820. [DOI] [PubMed] [Google Scholar]
  18. Leung D. Y., Glagov S., Mathews M. B. Elastin and collagen accumulation in rabbit ascending aorta and pulmonary trunk during postnatal growth. Correlation of cellular synthetic response with medial tension. Circ Res. 1977 Sep;41(3):316–323. doi: 10.1161/01.res.41.3.316. [DOI] [PubMed] [Google Scholar]
  19. McKenzie J. C., Clancy J., Jr, Klein R. M. Autoradiographic analysis of cell proliferation and protein synthesis in the pulmonary trunk of rats during the early development of hypoxia-induced pulmonary hypertension. Blood Vessels. 1984;21(2):80–89. [PubMed] [Google Scholar]
  20. Mecham R. P., Whitehouse L. A., Wrenn D. S., Parks W. C., Griffin G. L., Senior R. M., Crouch E. C., Stenmark K. R., Voelkel N. F. Smooth muscle-mediated connective tissue remodeling in pulmonary hypertension. Science. 1987 Jul 24;237(4813):423–426. doi: 10.1126/science.3603030. [DOI] [PubMed] [Google Scholar]
  21. Meyrick B., Reid L. Hypoxia and incorporation of 3H-thymidine by cells of the rat pulmonary arteries and alveolar wall. Am J Pathol. 1979 Jul;96(1):51–70. [PMC free article] [PubMed] [Google Scholar]
  22. Meyrick B., Reid L. Normal postnatal development of the media of the rat hilar pulmonary artery and its remodeling by chronic hypoxia. Lab Invest. 1982 May;46(5):505–514. [PubMed] [Google Scholar]
  23. Meyrick B., Reid L. Normal postnatal development of the media of the rat hilar pulmonary artery and its remodeling by chronic hypoxia. Lab Invest. 1982 May;46(5):505–514. [PubMed] [Google Scholar]
  24. Murphy J. D., Rabinovitch M., Goldstein J. D., Reid L. M. The structural basis of persistent pulmonary hypertension of the newborn infant. J Pediatr. 1981 Jun;98(6):962–967. doi: 10.1016/s0022-3476(81)80605-1. [DOI] [PubMed] [Google Scholar]
  25. Noguchi A., Samaha H. Developmental changes in tropoelastin gene expression in the rat lung studied by in situ hybridization. Am J Respir Cell Mol Biol. 1991 Dec;5(6):571–578. doi: 10.1165/ajrcmb/5.6.571. [DOI] [PubMed] [Google Scholar]
  26. Orton E. C., Reeves J. T., Stenmark K. R. Pulmonary vasodilation with structurally altered pulmonary vessels and pulmonary hypertension. J Appl Physiol (1985) 1988 Dec;65(6):2459–2467. doi: 10.1152/jappl.1988.65.6.2459. [DOI] [PubMed] [Google Scholar]
  27. Parks W. C., Deak S. B. Tropoelastin heterogeneity: implications for protein function and disease. Am J Respir Cell Mol Biol. 1990 May;2(5):399–406. doi: 10.1165/ajrcmb/2.5.399. [DOI] [PubMed] [Google Scholar]
  28. Parks W. C., Kolodziej M. E., Pierce R. A. Phorbol ester-mediated downregulation of tropoelastin expression is controlled by a posttranscriptional mechanism. Biochemistry. 1992 Jul 28;31(29):6639–6645. doi: 10.1021/bi00144a003. [DOI] [PubMed] [Google Scholar]
  29. Parks W. C., Secrist H., Wu L. C., Mecham R. P. Developmental regulation of tropoelastin isoforms. J Biol Chem. 1988 Mar 25;263(9):4416–4423. [PubMed] [Google Scholar]
  30. Pierce R. A., Kolodziej M. E., Parks W. C. 1,25-Dihydroxyvitamin D3 represses tropoelastin expression by a posttranscriptional mechanism. J Biol Chem. 1992 Jun 5;267(16):11593–11599. [PubMed] [Google Scholar]
  31. Prosser I. W., Stenmark K. R., Suthar M., Crouch E. C., Mecham R. P., Parks W. C. Regional heterogeneity of elastin and collagen gene expression in intralobar arteries in response to hypoxic pulmonary hypertension as demonstrated by in situ hybridization. Am J Pathol. 1989 Dec;135(6):1073–1088. [PMC free article] [PubMed] [Google Scholar]
  32. REEVES J. T., LEATHERS J. E. CIRCULATORY CHANGES FOLLOWING BIRTH OF THE CALF AND THE EFFECT OF HYPOXIA. Circ Res. 1964 Oct;15:343–354. doi: 10.1161/01.res.15.4.343. [DOI] [PubMed] [Google Scholar]
  33. Rabinovitch M., Konstam M. A., Gamble W. J., Papanicolaou N., Aronovitz M. J., Treves S., Reid L. Changes in pulmonary blood flow affect vascular response to chronic hypoxia in rats. Circ Res. 1983 Apr;52(4):432–441. doi: 10.1161/01.res.52.4.432. [DOI] [PubMed] [Google Scholar]
  34. Reeves J. T., Daoud F. S., Gentry M. Growth of the fetal calf and its arterial pressure, blood gases, and hematologic data. J Appl Physiol. 1972 Feb;32(2):240–244. doi: 10.1152/jappl.1972.32.2.240. [DOI] [PubMed] [Google Scholar]
  35. Rosenquist T. H., Beall A. C. Elastogenic cells in the developing cardiovascular system. Smooth muscle, nonmuscle, and cardiac neural crest. Ann N Y Acad Sci. 1990;588:106–119. doi: 10.1111/j.1749-6632.1990.tb13201.x. [DOI] [PubMed] [Google Scholar]
  36. Selmin O., Volpin D., Bressan G. M. Changes of cellular expression of mRNA for tropoelastin in the intraembryonic arterial vessels of developing chick revealed by in situ hybridization. Matrix. 1991 Nov;11(5):347–358. doi: 10.1016/s0934-8832(11)80206-4. [DOI] [PubMed] [Google Scholar]
  37. Stenmark K. R., Fasules J., Hyde D. M., Voelkel N. F., Henson J., Tucker A., Wilson H., Reeves J. T. Severe pulmonary hypertension and arterial adventitial changes in newborn calves at 4,300 m. J Appl Physiol (1985) 1987 Feb;62(2):821–830. doi: 10.1152/jappl.1987.62.2.821. [DOI] [PubMed] [Google Scholar]
  38. Tozzi C. A., Poiani G. J., Harangozo A. M., Boyd C. D., Riley D. J. Pressure-induced connective tissue synthesis in pulmonary artery segments is dependent on intact endothelium. J Clin Invest. 1989 Sep;84(3):1005–1012. doi: 10.1172/JCI114221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tozzi C. A., Poiani G. J., Harangozo A. M., Boyd C. D., Riley D. J. Pressure-induced connective tissue synthesis in pulmonary artery segments is dependent on intact endothelium. J Clin Invest. 1989 Sep;84(3):1005–1012. doi: 10.1172/JCI114221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wrenn D. S., Parks W. C., Whitehouse L. A., Crouch E. C., Kucich U., Rosenbloom J., Mecham R. P. Identification of multiple tropoelastins secreted by bovine cells. J Biol Chem. 1987 Feb 15;262(5):2244–2249. [PubMed] [Google Scholar]
  41. Yeh H., Ornstein-Goldstein N., Indik Z., Sheppard P., Anderson N., Rosenbloom J. C., Cicila G., Yoon K., Rosenbloom J. Sequence variation of bovine elastin mRNA due to alternative splicing. Coll Relat Res. 1987 Sep;7(4):235–247. doi: 10.1016/s0174-173x(87)80030-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES