Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Jun;142(3):763–767. doi: 10.1128/jb.142.3.763-767.1980

Fructose transport in Neurospora crassa.

J B Rand, E L Tatum
PMCID: PMC294090  PMID: 6445895

Abstract

A specific fructose uptake system (Km = 0.4 mM) appeared in Neurospora crassa when glucose-grown mycelia were starved. Fructose uptake had kinetics different from those of intramycelial fructose phosphorylation, and uptake appeared to be carrier mediated. The only sugar which competitively inhibited fructose uptake was L-sorbose (Ki = 9 mM). Glucose, 2-deoxyglucose, mannose, and 3-O-methyl glucose were noncompetitive inhibitors of fructose uptake. Incubation of glucose-grown mycelia with glucose, 2-deoxyglucose, or mannose prevented derepression of the fructose transport system, whereas incubation with 3-O-methyl glucose caused the appearance of five times as much fructose uptake activity as did starvation conditions.

Full text

PDF
763

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Crocken B., Tatum E. L. Sorbose transport in Neurospora crassa. Biochim Biophys Acta. 1967 Feb 1;135(1):100–105. doi: 10.1016/0005-2736(67)90011-9. [DOI] [PubMed] [Google Scholar]
  2. Crocken B., Tatum E. L. The effect of sorbose on metabolism and morphology of Neurospora. Biochim Biophys Acta. 1968 Feb 1;156(1):1–8. doi: 10.1016/0304-4165(68)90097-4. [DOI] [PubMed] [Google Scholar]
  3. Klingmüller W. Cellular components specifically labeled during sorbose stimulation of sugar transport in neurospora. Z Naturforsch B. 1971 May;26(5):409–413. doi: 10.1515/znb-1971-0507. [DOI] [PubMed] [Google Scholar]
  4. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  5. Mark C. G., Romano A. H. Properties of the hexose transport systems of Aspergillus nidulans. Biochim Biophys Acta. 1971 Oct 12;249(1):216–226. doi: 10.1016/0005-2736(71)90098-8. [DOI] [PubMed] [Google Scholar]
  6. Neville M. M., Suskind S. R., Roseman S. A derepressible active transport system for glucose in Neurospora crassa. J Biol Chem. 1971 Mar 10;246(5):1294–1301. [PubMed] [Google Scholar]
  7. Rand J. B., Tatum E. L. Characterization and regulation of galactose transport in Neurospora crassa. J Bacteriol. 1980 Feb;141(2):707–714. doi: 10.1128/jb.141.2.707-714.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Scarborough G. A. Sugar transport in Neurospora crassa. II. A second glucose transport system. J Biol Chem. 1970 Aug 10;245(15):3985–3987. [PubMed] [Google Scholar]
  9. Scarborough G. A. Sugar transport in Neurospora crassa. J Biol Chem. 1970 Apr 10;245(7):1694–1698. [PubMed] [Google Scholar]
  10. Schneider R. P., Wiley W. R. Kinetic characteristics of the two glucose transport systems in Neurospora crassa. J Bacteriol. 1971 May;106(2):479–486. doi: 10.1128/jb.106.2.479-486.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schneider R. P., Wiley W. R. Regulation of sugar transport in Neurospora crassa. J Bacteriol. 1971 May;106(2):487–492. doi: 10.1128/jb.106.2.487-492.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES