Abstract
We have used a cDNA probe from a cloned rat liver Na+/taurocholate cotransporting polypeptide (Ntcp) to screen a human liver cDNA library. A 1,599-bp cDNA clone that encodes a human Na+/taurocholate cotransporting polypeptide (NTCP) was isolated. The human NTCP consists of 349 amino acids (calculated molecular mass of 38 kD) and exhibits 77% amino acid homology with the rat Ntcp. In vitro translation experiments indicate that the protein is glycosylated and has a molecular weight similar to the rat Ntcp. Injection of in vitro transcribed cRNA into Xenopus laevis oocytes resulted in the expression of Na(+)-dependent taurocholate uptake. Saturation kinetics indicated that the human NTCP has a higher affinity for taurocholate (apparent Km = 6 microM) than the previously cloned rat protein (apparent Km = 25 microM). NTCP-mediated taurocholate uptake into oocytes was inhibited by all major bile acid derivatives (100 microM), bumetanide (500 microM), and bromosulphophthalein (100 microM). Southern blot analysis of genomic DNA from a panel of human/hamster somatic cell hybrids mapped the human NTCP gene to chromosome 14.
Full text
PDF![1326](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7977/294097/5a2ccb13364c/jcinvest00032-0416.png)
![1327](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7977/294097/1fb1101172c9/jcinvest00032-0417.png)
![1328](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7977/294097/bb1e22131f97/jcinvest00032-0418.png)
![1329](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7977/294097/96c78bfea241/jcinvest00032-0419.png)
![1330](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7977/294097/aad81f870789/jcinvest00032-0420.png)
![1331](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7977/294097/964b1e7daa24/jcinvest00032-0421.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boyer J. L., Hagenbuch B., Ananthanarayanan M., Suchy F., Stieger B., Meier P. J. Phylogenic and ontogenic expression of hepatocellular bile acid transport. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):435–438. doi: 10.1073/pnas.90.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frimmer M., Ziegler K. The transport of bile acids in liver cells. Biochim Biophys Acta. 1988 Feb 24;947(1):75–99. doi: 10.1016/0304-4157(88)90020-2. [DOI] [PubMed] [Google Scholar]
- Hagenbuch B., Lübbert H., Stieger B., Meier P. J. Expression of the hepatocyte Na+/bile acid cotransporter in Xenopus laevis oocytes. J Biol Chem. 1990 Apr 5;265(10):5357–5360. [PubMed] [Google Scholar]
- Hagenbuch B., Stieger B., Foguet M., Lübbert H., Meier P. J. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10629–10633. doi: 10.1073/pnas.88.23.10629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardison W. G., Lowe P. J., Gosink E. Nature of taurodehydrocholic acid uptake in rat hepatocytes. Am J Physiol. 1988 Feb;254(2 Pt 1):G269–G274. doi: 10.1152/ajpgi.1988.254.2.G269. [DOI] [PubMed] [Google Scholar]
- Hediger M. A., Coady M. J., Ikeda T. S., Wright E. M. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. 1987 Nov 26-Dec 2Nature. 330(6146):379–381. doi: 10.1038/330379a0. [DOI] [PubMed] [Google Scholar]
- Hediger M. A., Turk E., Wright E. M. Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5748–5752. doi: 10.1073/pnas.86.15.5748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson A. Purification and fractionation of poly(A)+ RNA. Methods Enzymol. 1987;152:254–261. doi: 10.1016/0076-6879(87)52028-6. [DOI] [PubMed] [Google Scholar]
- Jacquemin E., Hagenbuch B., Stieger B., Wolkoff A. W., Meier P. J. Expression of the hepatocellular chloride-dependent sulfobromophthalein uptake system in Xenopus laevis oocytes. J Clin Invest. 1991 Dec;88(6):2146–2149. doi: 10.1172/JCI115546. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein P., Kanehisa M., DeLisi C. The detection and classification of membrane-spanning proteins. Biochim Biophys Acta. 1985 May 28;815(3):468–476. doi: 10.1016/0005-2736(85)90375-x. [DOI] [PubMed] [Google Scholar]
- Komuro I., Wenninger K. E., Philipson K. D., Izumo S. Molecular cloning and characterization of the human cardiac Na+/Ca2+ exchanger cDNA. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4769–4773. doi: 10.1073/pnas.89.10.4769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicoll D. A., Longoni S., Philipson K. D. Molecular cloning and functional expression of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. Science. 1990 Oct 26;250(4980):562–565. doi: 10.1126/science.1700476. [DOI] [PubMed] [Google Scholar]
- Novak D. A., Ryckman F. C., Suchy F. J. Taurocholate transport by basolateral plasma membrane vesicles isolated from human liver. Hepatology. 1989 Oct;10(4):447–453. doi: 10.1002/hep.1840100408. [DOI] [PubMed] [Google Scholar]
- Van Dyke R. W., Stephens J. E., Scharschmidt B. F. Bile acid transport in cultured rat hepatocytes. Am J Physiol. 1982 Dec;243(6):G484–G492. doi: 10.1152/ajpgi.1982.243.6.G484. [DOI] [PubMed] [Google Scholar]
- Zimmerli B., Valantinas J., Meier P. J. Multispecificity of Na+-dependent taurocholate uptake in basolateral (sinusoidal) rat liver plasma membrane vesicles. J Pharmacol Exp Ther. 1989 Jul;250(1):301–308. [PubMed] [Google Scholar]