Abstract
When grown at the expense of 3,4,5-trimethoxybenzoic acid, a strain of Pseudomonas putida oxidized this compound and also 3,5-dimethoxy-4-hydroxybenzoic (syringic) and 3,4-dihydroxy-5-methoxybenzoic (3-O-methylgallic) acids; but other hydroxy- or methoxy-benzoic acids were oxidized slowly or not at all. Radioactivity appeared exclusively in carbon dioxide when cells were incubated with [4-methoxyl-14C]trimethoxybenzoic acid, but was found mainly in methanol when[methoxyl-14C]3-O-methylgallic acid was metabolized. The identity of methanol was proved by analyzing the product from [methoxyl-13C]3-O-methylgallic acid by nuclear magnetic resonance spectroscopy and by isolating the labeled 3,5-dinitrobenzoic acid methyl ester, which was examined by mass spectrometry. These results, together with measurements of oxygen consumed in demethylations catalyzed by cell extracts, showed that two methoxyl groups of 3,4,5-trimethoxybenzoate and one of syringate were oxidized to give carbon dioxide and 3-O-methylgallate. This was then metabolized to pyruvate; the other product was presumed to be the 4-methyl ester of oxalacetic acid, for which cell extracts contained an inducible, specific esterase. P. putida did not metabolize the methanol released from this compound by hydrolysis. Support for the proposed reaction sequence was obtained by isolating mutants which, although able to convert 3,4,5-trimethoxybenzoic acid into 3-O-methylgallic acid, were unable to use either compound for growth.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernhardt F. H., Erdin N., Staudinger H., Ullrich V. Interactions of substrates with a purified 4-methoxybenzoate monooxygenase system (O-demethylating) from Pseudomonas putida. Eur J Biochem. 1973 May;35(1):126–134. doi: 10.1111/j.1432-1033.1973.tb02818.x. [DOI] [PubMed] [Google Scholar]
- DAGLEY S., GIBSON D. T. THE BACTERIAL DEGRADATION OF CATECHOL. Biochem J. 1965 May;95:466–474. doi: 10.1042/bj0950466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hareland W. A., Crawford R. L., Chapman P. J., Dagley S. Metabolic function and properties of 4-hydroxyphenylacetic acid 1-hydroxylase from Pseudomonas acidovorans. J Bacteriol. 1975 Jan;121(1):272–285. doi: 10.1128/jb.121.1.272-285.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee Y. L., Sparnins V. L., Dagley S. Catabolism of 2,4,5-trimethyoxybenzoic acid and 3-methoxycrotonic acid. Appl Environ Microbiol. 1978 Apr;35(4):817–819. doi: 10.1128/aem.35.4.817-819.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ornston L. N., Ornston M. K., Chou G. Isolation of spontaneous mutant strains of Pseudomonas putida. Biochem Biophys Res Commun. 1969 Jul 7;36(1):179–184. doi: 10.1016/0006-291x(69)90666-4. [DOI] [PubMed] [Google Scholar]
- Ribbons D. W. Stoicheiometry of O-demethylase activity in Pseudomonas aeruginosa. FEBS Lett. 1970 May 25;8(2):101–104. doi: 10.1016/0014-5793(70)80235-6. [DOI] [PubMed] [Google Scholar]
- Sparnins V. L., Burbee D. G., Dagley S. Catabolism of L-tyrosine in Trichosporon cutaneum. J Bacteriol. 1979 May;138(2):425–430. doi: 10.1128/jb.138.2.425-430.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sparnins V. L., Chapman P. J., Dagley S. Bacterial degradation of 4-hydroxyphenylacetic acid and homoprotocatechuic acid. J Bacteriol. 1974 Oct;120(1):159–167. doi: 10.1128/jb.120.1.159-167.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sparnins V. L., Dagley S. Alternative routes of aromatic catabolism in Pseudomonas acidovorans and Pseudomonas putida: gallic acid as a substrate and inhibitor of dioxygenases. J Bacteriol. 1975 Dec;124(3):1374–1381. doi: 10.1128/jb.124.3.1374-1381.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tack B. F., Chapman P. J., Dagley S. Metabolism of gallic acid and syringic acid by Pseudomonas putida. J Biol Chem. 1972 Oct 25;247(20):6438–6443. [PubMed] [Google Scholar]
- Unkefer C. J., Gander J. E. The 5-O-beta-D-galactofuranosyl-containing glycopeptide from Penicillium charlesii. Carbon 13 nuclear magnetic resonance studies. J Biol Chem. 1979 Dec 10;254(23):12131–12135. [PubMed] [Google Scholar]
