Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Jun;142(3):1010–1014. doi: 10.1128/jb.142.3.1010-1014.1980

Changes in cyclic nucleotide levels and dimorphic transition in Candida albicans.

M Niimi, K Niimi, J Tokunaga, H Nakayama
PMCID: PMC294129  PMID: 6247330

Abstract

The relationship between the levels of cyclic nucleotides and dimorphic transition in Candida albicans was examined. The results showed that cells of this pathogenic fungus contained both cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine 3',5'-monophosphate (cGMP), the concentration of the latter being about one-tenth that of the former in stationary-phase cells of the yeast form. Our results further indicated that germ tube formation induced by incubation at 40 degrees C followed a rise in cAMP concentration in the cell with no accompanying change in cGMP content. Cysteine, which suppressed germination, also reversed the increase in intracellular cAMP concentration. Dibutyryl cAMP (1 MM) significantly promoted germination in proline medium at temperatures of 32 to 34 degrees C. These results suggested that cAMP was one of the controlling factors in the morphological transition in Candida albicans.

Full text

PDF
1010

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chaffin W. L., Sogin S. J. Germ tube formation from zonal rotor fractions of Candida albicans. J Bacteriol. 1976 May;126(2):771–776. doi: 10.1128/jb.126.2.771-776.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dabrowa N., Taxer S. S., Howard D. H. Germination of Candida albicans induced by proline. Infect Immun. 1976 Mar;13(3):830–835. doi: 10.1128/iai.13.3.830-835.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. EISMAN P. C., GEFTIC S. G., MAYER R. L. Virulence in mice of colonial variants of Candida albicans. Proc Soc Exp Biol Med. 1953 Feb;82(2):263–264. doi: 10.3181/00379727-82-20086. [DOI] [PubMed] [Google Scholar]
  4. Evans E. G., Odds F. C., Richardson M. D., Holland K. T. Optimum conditions for initiation of filamentation in Candida albicans. Can J Microbiol. 1975 Mar;21(3):338–342. doi: 10.1139/m75-048. [DOI] [PubMed] [Google Scholar]
  5. GEBHARDT L. P., HILL D. W. Morphological transformation of Candida albicans in tissues of mice. Proc Soc Exp Biol Med. 1956 Jul;92(3):640–644. doi: 10.3181/00379727-92-22570. [DOI] [PubMed] [Google Scholar]
  6. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldberg N. D., Haddox M. K. Cyclic GMP metabolism and involvement in biological regulation. Annu Rev Biochem. 1977;46:823–896. doi: 10.1146/annurev.bi.46.070177.004135. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Land G. A., McDonald W. C., Stjernholm R. L., Friedman T. L. Factors affecting filamentation in Candida albicans: relationship of the uptake and distribution of proline to morphogenesis. Infect Immun. 1975 May;11(5):1014–1023. doi: 10.1128/iai.11.5.1014-1023.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Larsen A. D., Sypherd P. S. Cyclic adenosine 3',5'-monophosphate and morphogenesis in Mucor racemosus. J Bacteriol. 1974 Feb;117(2):432–438. doi: 10.1128/jb.117.2.432-438.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lee K. L., Buckley H. R., Campbell C. C. An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida Albicans. Sabouraudia. 1975 Jul;13(2):148–153. doi: 10.1080/00362177585190271. [DOI] [PubMed] [Google Scholar]
  12. Mackenzie D. W. Morphogenesis of Candida albicans in vivo. Sabouraudia. 1964 Jun;3(3):225–232. [PubMed] [Google Scholar]
  13. Mao C. C., Guidotti A. Simultaneous isolation of adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) in small tissue samples. Anal Biochem. 1974 May;59(1):63–68. doi: 10.1016/0003-2697(74)90009-8. [DOI] [PubMed] [Google Scholar]
  14. Mardon D. N., Hurst S. K., Balish E. Germ-tube production by Candida albicans in minimal liquid culture media. Can J Microbiol. 1971 Jul;17(7):851–856. doi: 10.1139/m71-137. [DOI] [PubMed] [Google Scholar]
  15. Maresca B., Medoff G., Schlessinger D., Kobayashi G. S. Regulation of dimorphism in the pathogenic fungus Histoplasma capsulatum. Nature. 1977 Mar 31;266(5601):447–448. doi: 10.1038/266447a0. [DOI] [PubMed] [Google Scholar]
  16. Miyamoto E., Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. 3. Purification and properties of adenosine 3',5'-monophosphate-dependent protein kinase from bovine brain. J Biol Chem. 1969 Dec 10;244(23):6395–6402. [PubMed] [Google Scholar]
  17. NICKERSON W. J. SYMPOSIUM ON BIOCHEMICAL BASES OF MORPHOGENESIS IN FUNGI. IV. MOLECULAR BASES OF FORM IN YEASTS. Bacteriol Rev. 1963 Sep;27:305–324. doi: 10.1128/br.27.3.305-324.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Paveto C., Epstein A., Passeron S. Studies on cyclic adenosine 3' ,5'-monophosphate levels, Adenylate cyclase and phosphodiesterase activities in the dimorphic fungus Mucor rouxii. Arch Biochem Biophys. 1975 Aug;169(2):449–457. doi: 10.1016/0003-9861(75)90187-3. [DOI] [PubMed] [Google Scholar]
  19. Paznokas J. L., Sypherd P. S. Respiratory capacity, cyclic adenosine 3',5'-monophosphate, and morphogenesis of Mucor racemosus. J Bacteriol. 1975 Oct;124(1):134–139. doi: 10.1128/jb.124.1.134-139.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rickenberg H. V. Cyclic AMP in prokaryotes. Annu Rev Microbiol. 1974;28(0):353–369. doi: 10.1146/annurev.mi.28.100174.002033. [DOI] [PubMed] [Google Scholar]
  21. TASCHDJIAN C. L., REISS F., KOZINN P. J. Experimental vaginal candidiasis in mice; its implications for superficial candidiasis in humans. J Invest Dermatol. 1960 Feb;34:89–94. [PubMed] [Google Scholar]
  22. WINSTEN S., MURRAY T. J. Virulence enhancement of a filamentous strain of Candida albicans after growth on media containing cysteine. J Bacteriol. 1956 Jun;71(6):738–738. doi: 10.1128/jb.71.6.738-738.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wain W. H., Price M. F., Cawson R. A. A re-evaluation of the effect of cysteine or Candida albicans. Sabouraudia. 1975 Mar;13(Pt 1):74–82. [PubMed] [Google Scholar]
  24. YOUNG G. The process of invasion and the persistence of Candida albicans injected intraperitoneally into mice. J Infect Dis. 1958 Mar-Apr;102(2):114–120. doi: 10.1093/infdis/102.2.114. [DOI] [PubMed] [Google Scholar]
  25. Yamaguchi H. Mycelial development and chemical alteration of Candida albicans from biotin insufficiency. Sabouraudia. 1974 Nov;12(3):320–328. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES