Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Jun;142(3):1040–1044. doi: 10.1128/jb.142.3.1040-1044.1980

Alcohol-induced changes in the phospholipid molecular species of Escherichia coli.

B Berger, C E Carty, L O Ingram
PMCID: PMC294137  PMID: 6991490

Abstract

In Escherichia coli, the additon of ethanol resulted in the synthesis of an increased proportion of phospholipids containing two unsaturated fatty acids. The addition of hexanol resulted in the opposite effect, an increase in the proportion of monounsaturated molecular species. The alcohol-induced changes were quantitatively similar to those caused by changing growth temperature. These results suggest that both adaptation to temperature and alcohol-induced changes in lipid composition share some common regulatory features.

Full text

PDF
1040

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldassare J. J., Breneckle G. M., Hoffman M., Silbert D. F. Modification of membrane lipid. Functional properties of membrane in relation to fatty acid structure. J Biol Chem. 1977 Dec 25;252(24):8797–8803. [PubMed] [Google Scholar]
  2. Baldassare J. J., Rhinehart K. B., Silbert D. F. Modification of membrane lipid: physical properties in relation to fatty acid structure. Biochemistry. 1976 Jul 13;15(14):2986–2994. doi: 10.1021/bi00659a008. [DOI] [PubMed] [Google Scholar]
  3. Buttke T. M., Ingram L. O. Mechanism of ethanol-induced changes in lipid composition of Escherichia coli: inhibition of saturated fatty acid synthesis in vivo. Biochemistry. 1978 Feb 21;17(4):637–644. doi: 10.1021/bi00597a012. [DOI] [PubMed] [Google Scholar]
  4. Chesbro W., Evans T., Eifert R. Very slow growth of Escherichia coli. J Bacteriol. 1979 Aug;139(2):625–638. doi: 10.1128/jb.139.2.625-638.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chin J. H., Goldstein D. B. Effects of low concentrations of ethanol on the fluidity of spin-labeled erythrocyte and brain membranes. Mol Pharmacol. 1977 May;13(3):435–441. [PubMed] [Google Scholar]
  6. Cronan J. E., Jr Molecular biology of bacterial membrane lipids. Annu Rev Biochem. 1978;47:163–189. doi: 10.1146/annurev.bi.47.070178.001115. [DOI] [PubMed] [Google Scholar]
  7. Cronan J. E., Jr Thermal regulation of the membrane lipid composition of Escherichia coli. Evidence for the direct control of fatty acid synthesis. J Biol Chem. 1975 Sep 10;250(17):7074–7077. [PubMed] [Google Scholar]
  8. Grisham C. M., Barnett R. E. The effects of long-chain alcohols on membrane lipids and the (Na++K+)-ATPase. Biochim Biophys Acta. 1973 Jul 6;311(3):417–422. doi: 10.1016/0005-2736(73)90322-2. [DOI] [PubMed] [Google Scholar]
  9. Hong-wei S., McConnell H. Phase separations in phospholipd membranes. Biochemistry. 1975 Feb 25;14(4):847–854. doi: 10.1021/bi00675a032. [DOI] [PubMed] [Google Scholar]
  10. Hui F. K., Barton P. G. Mesomorphic behaviour of some phospholipids with aliphatic alcohols and other non-ionic substances. Biochim Biophys Acta. 1973 Mar 8;296(3):510–517. doi: 10.1016/0005-2760(73)90111-2. [DOI] [PubMed] [Google Scholar]
  11. Ingram L. O. Adaptation of membrane lipids to alcohols. J Bacteriol. 1976 Feb;125(2):670–678. doi: 10.1128/jb.125.2.670-678.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ingram L. O. Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives. Appl Environ Microbiol. 1977 May;33(5):1233–1236. doi: 10.1128/aem.33.5.1233-1236.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ingram L. O., Chevalier L. S., Gabba E. J., Ley K. D., Winters K. Propionate-induced synthesis of odd-chain-length fatty acids by Escherichia coli. J Bacteriol. 1977 Sep;131(3):1023–1025. doi: 10.1128/jb.131.3.1023-1025.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ingram L. O., Ley K. D., Hoffmann E. M. Drug-induced changes in lipid composition of E. coli and of mammalian cells in culture: ethanol, pentobarbital, and chlorpromazine. Life Sci. 1978 Feb;22(6):489–494. doi: 10.1016/0024-3205(78)90429-0. [DOI] [PubMed] [Google Scholar]
  15. Ishinaga M., Kanamoto R., Kito M. Distribution of phospholipid molecular species in outer and cytoplasmic membrane of Escherichia coli. J Biochem. 1979 Jul;86(1):161–165. [PubMed] [Google Scholar]
  16. Jain M. K., Gleeson J., Upreti A., Upreti G. C. Intrinsic perturbing ability of alkanols in lipid bilayers. Biochim Biophys Acta. 1978 May 4;509(1):1–8. doi: 10.1016/0005-2736(78)90002-0. [DOI] [PubMed] [Google Scholar]
  17. Kito M., Ishinaga M., Nishihara M., Kato M., Sawada S. Metabolism of the phosphatidylglycerol molecular species in Escherichia coli. Eur J Biochem. 1975 May;54(1):55–63. doi: 10.1111/j.1432-1033.1975.tb04113.x. [DOI] [PubMed] [Google Scholar]
  18. Lee A. G. Interactions between anesthetics and lipid mixtures. Normal alcohols. Biochemistry. 1976 Jun 1;15(11):2448–2454. doi: 10.1021/bi00656a031. [DOI] [PubMed] [Google Scholar]
  19. Lenaz G., Bertoli E., Curatola G., Mazzanti L., Bigi A. Lipid protein interactions in mitochondria. Spin and fluorescence probe studies on the effect of n-alkanols on phospholipid vesicles and mitochondrial membranes. Arch Biochem Biophys. 1976 Jan;172(1):278–288. doi: 10.1016/0003-9861(76)90077-1. [DOI] [PubMed] [Google Scholar]
  20. Luria S. E., Delbrück M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Genetics. 1943 Nov;28(6):491–511. doi: 10.1093/genetics/28.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Macdonald A. G. A dilatometric investigation of the effects of general anaesthetics, alcohols and hydrostatic pressure on the phase transition in smectic mesophases of dipalmitoyl phosphatidylcholine. Biochim Biophys Acta. 1978 Feb 2;507(1):26–37. doi: 10.1016/0005-2736(78)90371-1. [DOI] [PubMed] [Google Scholar]
  22. Marr A. G., Ingraham J. L. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI. J Bacteriol. 1962 Dec;84(6):1260–1267. doi: 10.1128/jb.84.6.1260-1267.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nandini-Kishore S. G., Mattox S. M., Martin C. E., Thompson G. A., Jr Membrane changes during growth of Tetrahymena in the presence of ethanol. Biochim Biophys Acta. 1979 Mar 8;551(2):315–327. doi: 10.1016/0005-2736(89)90009-6. [DOI] [PubMed] [Google Scholar]
  24. Paterson S. J., Butler K. W., Huang P., Labelle J., Smith I. C., Schneider H. The effects of alcohols on lipid bilayers: a spin label study. Biochim Biophys Acta. 1972 Jun 20;266(3):597–602. doi: 10.1016/0006-3002(72)90003-0. [DOI] [PubMed] [Google Scholar]
  25. Raetz C. R. Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiol Rev. 1978 Sep;42(3):614–659. doi: 10.1128/mr.42.3.614-659.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev. 1972 Dec;24(4):583–655. [PubMed] [Google Scholar]
  27. Silbert D. F. Arrangement of fatty acyl groups in phosphatidylethanolamine from a fatty acid auxotroph of Escherichia coli. Biochemistry. 1970 Sep 1;9(18):3631–3640. doi: 10.1021/bi00820a021. [DOI] [PubMed] [Google Scholar]
  28. Sinensky M. Homeoviscous adaptation--a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A. 1974 Feb;71(2):522–525. doi: 10.1073/pnas.71.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sullivan K. H., Hegeman G. D., Cordes E. H. Alteration of the fatty acid composition of Escherichia coli by growth in the presence of normal alcohols. J Bacteriol. 1979 Apr;138(1):133–138. doi: 10.1128/jb.138.1.133-138.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sullivan K. H., Jain M. K., Koch A. L. Activation of the beta-galactoside transport system in Escherichia coli ML-308 by n-alkanols. Modification of lipid-protein interaction by a change in bilayer fluidity. Biochim Biophys Acta. 1974 Jun 13;352(2):287–297. doi: 10.1016/0005-2736(74)90220-x. [DOI] [PubMed] [Google Scholar]
  31. Thomas D. S., Hossack J. A., Rose A. H. Plasma-membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Arch Microbiol. 1978 Jun 26;117(3):239–245. doi: 10.1007/BF00738541. [DOI] [PubMed] [Google Scholar]
  32. Vanderkooi J. M., Landesberg R., Selick H., 2nd, McDonald G. G. Interaction of general anesthetics with phospholipid vesicles and biological membranes. Biochim Biophys Acta. 1977 Jan 4;464(1):1–18. doi: 10.1016/0005-2736(77)90366-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES