Abstract
The biochemical consequences of inositol limitation in an inositol auxotroph of Neurospora crassa have been examined as a means of disclosing the cellular role of inositol. The cellular levels of inositol in the inl mutant were proportional to the concentration of inositol in the growth medium whereas inositol phosphate levels remained relatively constant at about 0.1 μmol/g (dry weight). After 72 h of growth, about 57-fold more protein per milligram (dry weight) was released by the mutant grown on limiting inositol than by the inositol-supplemented control. When the inositol-limited growth medium was osmotically buffered with 1% NaCl, 3% NaCl, or 6% sorbitol, there was about 33, 74, or 54%, respectively, less protein released by the mutant. These results are consistent with cell lysis occurring in the mutant grown on limiting inositol because of a structurally weakened cell wall and membrane deterioration. When sufficient inositol for normal mycelial growth was supplied to an inositol-deficient mycelium, there was within 2 h a rapid incorporation of inositol to 85% of control levels. This incorporation occurred without significant growth by any area of the mycelium. About 10 to 15% of the total cell inositol was translocated forward from the older mycelial areas to the growing tips; only 2 to 5% of the total cell inositol was translocated backward toward the older mycelial areas. Possible mechanisms of translocation are discussed.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angus W. W., Lester R. L. Turnover of inositol and phosphorus containing lipids in Saccharomyces cerevisiae; extracellular accumulation of glycerophosphorylinositol derived from phosphatidylinositol. Arch Biochem Biophys. 1972 Aug;151(2):483–495. doi: 10.1016/0003-9861(72)90525-5. [DOI] [PubMed] [Google Scholar]
- Becker G. W., Lester R. L. Changes in phospholipids of Saccharomyces cerevisiae associated with inositol-less death. J Biol Chem. 1977 Dec 10;252(23):8684–8691. [PubMed] [Google Scholar]
- Brennan P. J., Lösel D. M. Physiology of fungal lipids: selected topics. Adv Microb Physiol. 1978;17:47–179. doi: 10.1016/s0065-2911(08)60057-0. [DOI] [PubMed] [Google Scholar]
- Edson C. M., Brody S. Biochemical and genetic studies on galactosamine metabolism in Neurospora crassa. J Bacteriol. 1976 May;126(2):799–805. doi: 10.1128/jb.126.2.799-805.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GERMANIER R. [Research on inositol metabolism in an inositol-autotrophic and an inositol-heterotrophic strain of Neurospora crassa]. Arch Mikrobiol. 1959;33:333–356. [PubMed] [Google Scholar]
- Hanson B. A., Lester R. L. Effects of inositol starvation on phospholipid and glycan syntheses in Saccharomyces cerevisiae. J Bacteriol. 1980 Apr;142(1):79–89. doi: 10.1128/jb.142.1.79-89.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanson B. A., Lester R. L. The extraction of inositol-containing phospholipids and phosphatidylcholine from Saccharomyces cerevisiae and Neurospora crassa. J Lipid Res. 1980 Mar;21(3):309–315. [PubMed] [Google Scholar]
- Hanson B., Brody S. Lipid and cell wall changes in an inositol-requiring mutant of Neurospora crassa. J Bacteriol. 1979 May;138(2):461–466. doi: 10.1128/jb.138.2.461-466.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubbard S. C., Brody S. Glycerophospholipid variation in choline and inositol auxotrophs of Neurospora crassa. Internal compensation among zwitterionic and anionic species. J Biol Chem. 1975 Sep 25;250(18):7173–7181. [PubMed] [Google Scholar]
- Hunsley D., Kay D. Wall structure of the Neurospora hyphal apex: immunofluorescent localization of wall surface antigens. J Gen Microbiol. 1976 Aug;96(2):233–248. doi: 10.1099/00221287-95-2-233. [DOI] [PubMed] [Google Scholar]
- Inoue H., Ishikawa T. Death resulting from unbalanced growth in a temperature-sensitive mutant of Neurospora crassa. Arch Microbiol. 1975 Jun 20;104(1):1–6. doi: 10.1007/BF00447292. [DOI] [PubMed] [Google Scholar]
- Katz D., Rosenberger R. F. A mutation in Aspergillus nidulans producing hyphal walls which lack chitin. Biochim Biophys Acta. 1970 Jun;208(3):452–460. doi: 10.1016/0304-4165(70)90218-7. [DOI] [PubMed] [Google Scholar]
- Katz D., Rosenberger R. F. Hyphal wall synthesis in Aspergillus nidulans: effect of protein synthesis inhibition and osmotic shock on chitin insertion and morphogenesis. J Bacteriol. 1971 Oct;108(1):184–190. doi: 10.1128/jb.108.1.184-190.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LUCAS R. L. Transport of phosphorus by fungal mycelium. Nature. 1960 Nov 26;188:763–764. doi: 10.1038/188763a0. [DOI] [PubMed] [Google Scholar]
- Lester R. L., Smith S. W., Wells G. B., Rees D. C., Angus W. W. The isolation and partial characterization of two novel sphingolipids from Neurospora crassa: di(inositolphosphoryl)ceramide and ((gal)3glu)ceramide. J Biol Chem. 1974 Jun 10;249(11):3388–3394. [PubMed] [Google Scholar]
- Munkres K. D. Ageing of Neurospora crassa. III. Induction of cellular death and clonal senescence of an inositol-less mutant by inositol starvation and the protective effect of dietary antioxidants. Mech Ageing Dev. 1976 May-Jun;5(3):163–169. doi: 10.1016/0047-6374(76)90016-6. [DOI] [PubMed] [Google Scholar]
- NICKERSON W. J. SYMPOSIUM ON BIOCHEMICAL BASES OF MORPHOGENESIS IN FUNGI. IV. MOLECULAR BASES OF FORM IN YEASTS. Bacteriol Rev. 1963 Sep;27:305–324. doi: 10.1128/br.27.3.305-324.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- POSTERNAK T., SCHOPFER W. H. Incorporation d'une substance anti-inositol dans les phospholipides de Neurospora crassa inositolless. Bull Soc Chim Biol (Paris) 1957 Sep 26;39(9-10):1037–1047. [PubMed] [Google Scholar]
- Piña E., Tatum E. L. Inositol biosynthesis in Neurospora crassa. Biochim Biophys Acta. 1967 Mar 22;136(2):265–271. doi: 10.1016/0304-4165(67)90071-2. [DOI] [PubMed] [Google Scholar]
- Rana R. S., Munkres K. D. Ageing of Neurospora crassa. V. Lipid peroxidation and decay of respiratory enzymes in an inositol auxotroph. Mech Ageing Dev. 1978 Apr;7(4):241–272. doi: 10.1016/0047-6374(78)90070-2. [DOI] [PubMed] [Google Scholar]
- Rana R. S., Munkres K. D. Ageing of Neurospora crassa. VI. Cytochemical and cytological correlates of senescence in three model systems. Mech Ageing Dev. 1978 Apr;7(4):273–288. doi: 10.1016/0047-6374(78)90071-4. [DOI] [PubMed] [Google Scholar]
- Steiner M. R., Lester R. L. In vitro studies of phospholipid biosynthesis in Saccharomyces cerevisiae. Biochim Biophys Acta. 1972 Feb 21;260(2):222–243. doi: 10.1016/0005-2760(72)90035-5. [DOI] [PubMed] [Google Scholar]
- Sullivan J. L., Debusk A. G. Inositol-less death in Neurospora and cellular ageing. Nat New Biol. 1973 May 16;243(124):72–74. [PubMed] [Google Scholar]
- Trinci A. P. A study of the kinetics of hyphal extension and branch initiation of fungal mycelia. J Gen Microbiol. 1974 Mar;81(1):225–236. doi: 10.1099/00221287-81-1-225. [DOI] [PubMed] [Google Scholar]