Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Jul;143(1):142–150. doi: 10.1128/jb.143.1.142-150.1980

Co-Regulation in Escherichia coli of a Novel Transport System for sn-Glycerol-3-Phosphate and Outer Membrane Protein Ic (e, E) with Alkaline Phosphatase and Phosphate-Binding Protein

Manfred Argast 1, Winfried Boos 1
PMCID: PMC294198  PMID: 6995424

Abstract

Mutants constitutive for the novel outer membrane protein Ic (e or E) contained a recently discovered binding protein for sn-glycerol-3-phosphate. The corresponding parental strains missing the outer membrane protein Ic (e, E) were negative or strongly reduced in the synthesis of the binding protein. In addition, strains that were previously isolated as mutants constitutive for the sn-glycerol-3-phosphate transport system (ugp+ mutants) and that produced the novel periplasmic proteins GP1 to GP4 also synthesized a new outer membrane protein with the same electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels as protein Ic. Screening of different ugp+ mutants revealed the existence of three types in respect to the four novel periplasmic proteins GP1, -2, -3, and -4: (i) one containing all four proteins; (ii) one containing only proteins GP1, -2, and -3; (iii) one containing only proteins GP1, -2, and -4. In confirmation of the data presented in the accompanying paper by Tommassen and Lugtenberg (J. Bacteriol. 143:151–157, 1980), we found that purified GP1 is identical to alkaline phosphatase, whereas purified GP3 has binding activity of inorganic phosphate and is identical to the phosphate-binding protein. Moreover, growth conditions that lead in a wild-type strain to the derepression of alkaline phosphatase synthesis also derepressed the synthesis of the sn-glycerol-3-phosphate-binding protein as well as the corresponding transport system. Thus, the new sn-glycerol-3-phosphate transport system is part of the alkaline phosphatase regulatory system.

Full text

PDF
142

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aono H., Otsuji N. Genetic mapping of regulator gene phoS for alkaline phosphatase in Escherichia coli. J Bacteriol. 1968 Mar;95(3):1182–1183. doi: 10.1128/jb.95.3.1182-1183.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Argast M., Boos W. Purification and properties of the sn-glycerol 3-phosphate-binding protein of Escherichia coli. J Biol Chem. 1979 Nov 10;254(21):10931–10935. [PubMed] [Google Scholar]
  3. Argast M., Ludtke D., Silhavy T. J., Boos W. A second transport system for sn-glycerol-3-phosphate in Escherichia coli. J Bacteriol. 1978 Dec;136(3):1070–1083. doi: 10.1128/jb.136.3.1070-1083.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bachmann B. J., Low K. B., Taylor A. L. Recalibrated linkage map of Escherichia coli K-12. Bacteriol Rev. 1976 Mar;40(1):116–167. doi: 10.1128/br.40.1.116-167.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bavoil P., Nikaido H., von Meyenburg K. Pleiotropic transport mutants of Escherichia coli lack porin, a major outer membrane protein. Mol Gen Genet. 1977 Dec 14;158(1):23–33. doi: 10.1007/BF00455116. [DOI] [PubMed] [Google Scholar]
  6. Benz R., Boehler-Kohler B. A., Dieterle R., Boos W. Porin activity in the osmotic shock fluid of Escherichia coli. J Bacteriol. 1978 Sep;135(3):1080–1090. doi: 10.1128/jb.135.3.1080-1090.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bracha M., Yagil E. A ne type of alkaline phosphatase-negative mutants in Escherichia coli K12. Mol Gen Genet. 1973 Mar 27;122(1):53–60. doi: 10.1007/BF00337973. [DOI] [PubMed] [Google Scholar]
  8. Brickman E., Beckwith J. Analysis of the regulation of Escherichia coli alkaline phosphatase synthesis using deletions and phi80 transducing phages. J Mol Biol. 1975 Aug 5;96(2):307–316. doi: 10.1016/0022-2836(75)90350-2. [DOI] [PubMed] [Google Scholar]
  9. Chai T. J., Foulds J. Inactivation of bacteriophages by protein E, a new major membrane protein isolated from an Escherichia coli mutant. J Bacteriol. 1979 Jan;137(1):226–233. doi: 10.1128/jb.137.1.226-233.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chai T. J., Foulds J. Two bacteriophages which utilize a new Escherichia coli major outer membrane protein as part of their receptor. J Bacteriol. 1978 Jul;135(1):164–170. doi: 10.1128/jb.135.1.164-170.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Foulds J., Chai T. J. New major outer membrane proteins found in an Escherichia coli tolF mutant resistant to bacteriophage TuIb. J Bacteriol. 1978 Mar;133(3):1478–1483. doi: 10.1128/jb.133.3.1478-1483.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GAREN A., LEVINTHAL C. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta. 1960 Mar 11;38:470–483. doi: 10.1016/0006-3002(60)91282-8. [DOI] [PubMed] [Google Scholar]
  13. GAREN A., OTSUJI N. ISOLATION OF A PROTEIN SPECIFIED BY A REGULATOR GENE. J Mol Biol. 1964 Jun;8:841–852. doi: 10.1016/s0022-2836(64)80165-0. [DOI] [PubMed] [Google Scholar]
  14. Gerdes R. G., Rosenberg H. The relationship between the phosphate-binding protein and a regulator gene product from Escherichia coli. Biochim Biophys Acta. 1974 May 10;351(1):77–86. doi: 10.1016/0005-2795(74)90066-x. [DOI] [PubMed] [Google Scholar]
  15. Gerdes R. G., Strickland K. P., Rosenberg H. Restoration of phosphate transport by the phosphate-binding protein in spheroplasts of Escherichia coli. J Bacteriol. 1977 Aug;131(2):512–518. doi: 10.1128/jb.131.2.512-518.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HORIUCHI T., HORIUCHI S., MIZUNO D. A possible negative feedback phenomenon controlling formation of alkaline phosphomonoesterase in Escherichia coli. Nature. 1959 May 30;183(4674):1529–1530. doi: 10.1038/1831529b0. [DOI] [PubMed] [Google Scholar]
  17. Henning U., Schmidmayr W., Hindennach I. Major proteins of the outer cell envelope membrane of Escherichia coli K-12: multiple species of protein I. Mol Gen Genet. 1977 Sep 9;154(3):293–298. doi: 10.1007/BF00571285. [DOI] [PubMed] [Google Scholar]
  18. Ichihara S., Mizushima S. Arrangement of proteins O-8 and O-9 in outer membrane of Escherichia coli K-12. Existence of homotrimers and heterotrimers. Eur J Biochem. 1979 Oct 15;100(2):321–328. doi: 10.1111/j.1432-1033.1979.tb04174.x. [DOI] [PubMed] [Google Scholar]
  19. Johnson W. C., Silhavy T. J., Boos W. Two-dimensional polyacylamide gel electrophoresis of envelope proteins of Escherichia coli. Appl Microbiol. 1975 Mar;29(3):405–413. doi: 10.1128/am.29.3.405-413.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kulaev I. S. Biochemistry of inorganic polyphosphates. Rev Physiol Biochem Pharmacol. 1975;73:131–158. doi: 10.1007/BFb0034661. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lugtenberg B., van Boxtel R., Verhoef C., van Alphen W. Pore protein e of the outer membrane of Escherichia coli K12. FEBS Lett. 1978 Dec 1;96(1):99–105. doi: 10.1016/0014-5793(78)81071-0. [DOI] [PubMed] [Google Scholar]
  23. Morris H., Schlesinger M. J., Bracha M., Yagil E. Pleiotropic effects of mutations involved in the regulation of Escherichia coli K-12 alkaline phosphatase. J Bacteriol. 1974 Aug;119(2):583–592. doi: 10.1128/jb.119.2.583-592.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Neu H. C., Heppel L. A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem. 1965 Sep;240(9):3685–3692. [PubMed] [Google Scholar]
  25. Pugsley A. P., Schnaitman C. A. Identification of three genes controlling production of new outer membrane pore proteins in Escherichia coli K-12. J Bacteriol. 1978 Sep;135(3):1118–1129. doi: 10.1128/jb.135.3.1118-1129.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schnaitman C. A. Outer membrane proteins of Escherichia coli. 3. Evidence that the major protein of Escherichia coli O111 outer membrane consists of four distinct polypeptide species. J Bacteriol. 1974 May;118(2):442–453. doi: 10.1128/jb.118.2.442-453.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Silhavy T. J., Hartig-Beecken I., Boos W. Periplasmic protein related to the sn-glycerol-3-phosphate transport system of Escherichia coli. J Bacteriol. 1976 May;126(2):951–958. doi: 10.1128/jb.126.2.951-958.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Silhavy T. J., Szmelcman S., Boos W., Schwartz M. On the significance of the retention of ligand by protein. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2120–2124. doi: 10.1073/pnas.72.6.2120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Szmelcman S., Schwartz M., Silhavy T. J., Boos W. Maltose transport in Escherichia coli K12. A comparison of transport kinetics in wild-type and lambda-resistant mutants as measured by fluorescence quenching. Eur J Biochem. 1976 May 17;65(1):13–19. doi: 10.1111/j.1432-1033.1976.tb10383.x. [DOI] [PubMed] [Google Scholar]
  30. TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960 Mar 11;38:460–469. doi: 10.1016/0006-3002(60)91281-6. [DOI] [PubMed] [Google Scholar]
  31. TORRIANI A., ROTHMAN F. Mutants of Escherichia coli constitutive for alkaline phosphatase. J Bacteriol. 1961 May;81:835–836. doi: 10.1128/jb.81.5.835-836.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tommassen J., Lugtenberg B. Outer membrane protein e of Escherichia coli K-12 is co-regulated with alkaline phosphatase. J Bacteriol. 1980 Jul;143(1):151–157. doi: 10.1128/jb.143.1.151-157.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wandersman C., Schwartz M., Ferenci T. Escherichia coli mutants impaired in maltodextrin transport. J Bacteriol. 1979 Oct;140(1):1–13. doi: 10.1128/jb.140.1.1-13.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wilkins A. S. Physiological factors in the regulation of alkaline phosphatase synthesis in Escherichia coli. J Bacteriol. 1972 May;110(2):616–623. doi: 10.1128/jb.110.2.616-623.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Willsky G. R., Bennett R. L., Malamy M. H. Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. J Bacteriol. 1973 Feb;113(2):529–539. doi: 10.1128/jb.113.2.529-539.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Willsky G. R., Malamy M. H. Control of the synthesis of alkaline phosphatase and the phosphate-binding protein in Escherichia coli. J Bacteriol. 1976 Jul;127(1):595–609. doi: 10.1128/jb.127.1.595-609.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Willsky G. R., Malamy M. H. The loss of the phoS periplasmic protein leads to a change in the specificity of a constitutive inorganic phosphate transport system in Escherichia coli. Biochem Biophys Res Commun. 1974 Sep 9;60(1):226–233. doi: 10.1016/0006-291x(74)90195-8. [DOI] [PubMed] [Google Scholar]
  38. Yagil E., Silberstein N., Gerdes R. G. Co-regulation of the phosphate-binding protein and alkaline phosphatase synthesis in Escherichia coli. J Bacteriol. 1976 Jul;127(1):656–659. doi: 10.1128/jb.127.1.656-659.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. van Alphen W., van Seim N., Lugtenberg B. Pores in the outer membrane of Escherichia coli K12: involvement of proteins b and e in the functioning of pores for nucleotides. Mol Gen Genet. 1978 Feb 7;159(1):75–83. doi: 10.1007/BF00401750. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES