Abstract
Migration plays an important role in the formation of tumor metastases. Nonetheless, little is known about electrophysiological phenomena accompanying or underlying migration. Previously, we had shown that in migrating alkali-transformed Madin-Darby canine kidney focus (MDCK-F) cells a Ca(2+)-sensitive 53-pS K+ channel underlies oscillations of the cell membrane potential. The present study defines the role this channel plays in migration of MDCK-F cells. We monitored migration of individual MDCK-F cells by video imaging techniques. Under control conditions, MDCK-F cells migrated at a rate of 0.90 +/- 0.03 microns/min (n = 201). Application of K+ channel blockers (1 and 5 mmol/liter Ba2+, 5 mmol/liter tetraethylammonium, 100 mumol/liter 4-aminopyridine, 5 nmol/liter charybdotoxin) caused marked inhibition of migration, pointing to the importance of K+ channels in migration. Using patch-clamp techniques, we demonstrated the sensitivity of the Ca(2+)-sensitive 53-pS K+ channel to these blockers. Blockade of this K+ channel and inhibition of migration were closely correlated, indicating the necessity of oscillating K+ channel activity for migration. Migration of MDCK-F cells was also inhibited by furosemide or bumetanide, blockers of the Na+/K+/2Cl- cotransporter. We present a model for migration in which oscillations of cell volume play a central role. Whenever they are impaired, migration is inhibited.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arcangeli A., Becchetti A., Mannini A., Mugnai G., De Filippi P., Tarone G., Del Bene M. R., Barletta E., Wanke E., Olivotto M. Integrin-mediated neurite outgrowth in neuroblastoma cells depends on the activation of potassium channels. J Cell Biol. 1993 Sep;122(5):1131–1143. doi: 10.1083/jcb.122.5.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bray D., White J. G. Cortical flow in animal cells. Science. 1988 Feb 19;239(4842):883–888. doi: 10.1126/science.3277283. [DOI] [PubMed] [Google Scholar]
- Bretscher M. S. Cells can use their transferrin receptors for locomotion. EMBO J. 1992 Feb;11(2):383–389. doi: 10.1002/j.1460-2075.1992.tb05066.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bretscher M. S. Endocytosis: relation to capping and cell locomotion. Science. 1984 May 18;224(4650):681–686. doi: 10.1126/science.6719108. [DOI] [PubMed] [Google Scholar]
- Cantiello H. F., Prat A. G., Bonventre J. V., Cunningham C. C., Hartwig J. H., Ausiello D. A. Actin-binding protein contributes to cell volume regulatory ion channel activation in melanoma cells. J Biol Chem. 1993 Mar 5;268(7):4596–4599. [PubMed] [Google Scholar]
- Cunningham C. C., Gorlin J. B., Kwiatkowski D. J., Hartwig J. H., Janmey P. A., Byers H. R., Stossel T. P. Actin-binding protein requirement for cortical stability and efficient locomotion. Science. 1992 Jan 17;255(5042):325–327. doi: 10.1126/science.1549777. [DOI] [PubMed] [Google Scholar]
- Egelhoff T. T., Spudich J. A. Molecular genetics of cell migration: Dictyostelium as a model system. Trends Genet. 1991 May;7(5):161–166. doi: 10.1016/0168-9525(91)90380-9. [DOI] [PubMed] [Google Scholar]
- Forscher P. Calcium and polyphosphoinositide control of cytoskeletal dynamics. Trends Neurosci. 1989 Nov;12(11):468–474. doi: 10.1016/0166-2236(89)90098-2. [DOI] [PubMed] [Google Scholar]
- Forscher P., Lin C. H., Thompson C. Novel form of growth cone motility involving site-directed actin filament assembly. Nature. 1992 Jun 11;357(6378):515–518. doi: 10.1038/357515a0. [DOI] [PubMed] [Google Scholar]
- Foskett J. K., Melvin J. E. Activation of salivary secretion: coupling of cell volume and [Ca2+]i in single cells. Science. 1989 Jun 30;244(4912):1582–1585. doi: 10.1126/science.2500708. [DOI] [PubMed] [Google Scholar]
- Gallin E. K. Evidence for a Ca-activated inwardly rectifying K channel in human macrophages. Am J Physiol. 1989 Jul;257(1 Pt 1):C77–C85. doi: 10.1152/ajpcell.1989.257.1.C77. [DOI] [PubMed] [Google Scholar]
- Gallin E. K., Wiederhold M. L., Lipsky P. E., Rosenthal A. S. Spontaneous and induced membrane hyperpolarizations in macrophages. J Cell Physiol. 1975 Dec;86 (Suppl 2)(3 Pt 2):653–661. doi: 10.1002/jcp.1040860510. [DOI] [PubMed] [Google Scholar]
- Grinstein S., Foskett J. K. Ionic mechanisms of cell volume regulation in leukocytes. Annu Rev Physiol. 1990;52:399–414. doi: 10.1146/annurev.ph.52.030190.002151. [DOI] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Kersting U., Wojnowski L., Steigner W., Oberleithner H. Hypotonic stress-induced release of KHCO3 in fused renal epitheloid (MDCK) cells. Kidney Int. 1991 May;39(5):891–900. doi: 10.1038/ki.1991.112. [DOI] [PubMed] [Google Scholar]
- Komuro H., Rakic P. Modulation of neuronal migration by NMDA receptors. Science. 1993 Apr 2;260(5104):95–97. doi: 10.1126/science.8096653. [DOI] [PubMed] [Google Scholar]
- Komuro H., Rakic P. Selective role of N-type calcium channels in neuronal migration. Science. 1992 Aug 7;257(5071):806–809. doi: 10.1126/science.1323145. [DOI] [PubMed] [Google Scholar]
- Kucik D. F., Elson E. L., Sheetz M. P. Cell migration does not produce membrane flow. J Cell Biol. 1990 Oct;111(4):1617–1622. doi: 10.1083/jcb.111.4.1617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lang F., Ritter M., Wöll E., Weiss H., Häussinger D., Hoflacher J., Maly K., Grunicke H. Altered cell volume regulation in ras oncogene expressing NIH fibroblasts. Pflugers Arch. 1992 Apr;420(5-6):424–427. doi: 10.1007/BF00374615. [DOI] [PubMed] [Google Scholar]
- Lee J., Gustafsson M., Magnusson K. E., Jacobson K. The direction of membrane lipid flow in locomoting polymorphonuclear leukocytes. Science. 1990 Mar 9;247(4947):1229–1233. doi: 10.1126/science.2315695. [DOI] [PubMed] [Google Scholar]
- McRoberts J. A., Erlinger S., Rindler M. J., Saier M. H., Jr Furosemide-sensitive salt transport in the Madin-Darby canine kidney cell line. Evidence for the cotransport of Na+, K+, and Cl-. J Biol Chem. 1982 Mar 10;257(5):2260–2266. [PubMed] [Google Scholar]
- Meyer M., Maly K., Uberall F., Hoflacher J., Grunicke H. Stimulation of K+ transport systems by Ha-ras. J Biol Chem. 1991 May 5;266(13):8230–8235. [PubMed] [Google Scholar]
- Montrose-Rafizadeh C., Guggino W. B. Cell volume regulation in the nephron. Annu Rev Physiol. 1990;52:761–772. doi: 10.1146/annurev.ph.52.030190.003553. [DOI] [PubMed] [Google Scholar]
- Oberleithner H., Westphale H. J., Gassner B. Alkaline stress transforms Madin-Darby canine kidney cells. Pflugers Arch. 1991 Oct;419(3-4):418–420. doi: 10.1007/BF00371126. [DOI] [PubMed] [Google Scholar]
- Pienta K. J., Coffey D. S. Cell motility as a chemotherapeutic target. Cancer Surv. 1991;11:255–263. [PubMed] [Google Scholar]
- Rothstein A., Mack E. Volume-activated calcium uptake: its role in cell volume regulation of Madin-Darby canine kidney cells. Am J Physiol. 1992 Feb;262(2 Pt 1):C339–C347. doi: 10.1152/ajpcell.1992.262.2.C339. [DOI] [PubMed] [Google Scholar]
- Schwab A., Geibel J., Wang W., Oberleithner H., Giebisch G. Mechanism of activation of K+ channels by minoxidil-sulfate in Madin-Darby canine kidney cells. J Membr Biol. 1993 Mar;132(2):125–136. doi: 10.1007/BF00239002. [DOI] [PubMed] [Google Scholar]
- Schwab A., Westphale H. J., Wojnowski L., Wünsch S., Oberleithner H. Spontaneously oscillating K+ channel activity in transformed Madin-Darby canine kidney cells. J Clin Invest. 1993 Jul;92(1):218–223. doi: 10.1172/JCI116553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer S. J., Kupfer A. The directed migration of eukaryotic cells. Annu Rev Cell Biol. 1986;2:337–365. doi: 10.1146/annurev.cb.02.110186.002005. [DOI] [PubMed] [Google Scholar]
- Stossel T. P. On the crawling of animal cells. Science. 1993 May 21;260(5111):1086–1094. doi: 10.1126/science.8493552. [DOI] [PubMed] [Google Scholar]
- Theriot J. A., Mitchison T. J. Comparison of actin and cell surface dynamics in motile fibroblasts. J Cell Biol. 1992 Oct;119(2):367–377. doi: 10.1083/jcb.119.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volk T., Geiger B., Raz A. Motility and adhesive properties of high- and low-metastatic murine neoplastic cells. Cancer Res. 1984 Feb;44(2):811–824. [PubMed] [Google Scholar]
- Wang Y. L. Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J Cell Biol. 1985 Aug;101(2):597–602. doi: 10.1083/jcb.101.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss H., Lang F. Ion channels activated by swelling of Madin Darby canine kidney (MDCK) cells. J Membr Biol. 1992 Mar;126(2):109–114. doi: 10.1007/BF00231909. [DOI] [PubMed] [Google Scholar]
- Westphale H. J., Wojnowski L., Schwab A., Oberleithner H. Spontaneous membrane potential oscillations in Madin-Darby canine kidney cells transformed by alkaline stress. Pflugers Arch. 1992 Jun;421(2-3):218–223. doi: 10.1007/BF00374830. [DOI] [PubMed] [Google Scholar]
- Wojnowski L., Hoyland J., Mason W. T., Schwab A., Westphale H. J., Oberleithner H. Cell transformation induces a cytoplasmic Ca2+ oscillator in Madin-Darby canine kidney cells. Pflugers Arch. 1994 Jan;426(1-2):89–94. doi: 10.1007/BF00374675. [DOI] [PubMed] [Google Scholar]
- Wojnowski L., Schwab A., Hoyland J., Mason W. T., Silbernagl S., Oberleithner H. Cytoplasmic Ca2+ determines the rate of Ca2+ entry into Mardin-Darby canine kidney-focus (MDCK-F) cells. Pflugers Arch. 1994 Jan;426(1-2):95–100. doi: 10.1007/BF00374676. [DOI] [PubMed] [Google Scholar]
- Wong M. M., Foskett J. K. Oscillations of cytosolic sodium during calcium oscillations in exocrine acinar cells. Science. 1991 Nov 15;254(5034):1014–1016. doi: 10.1126/science.1948071. [DOI] [PubMed] [Google Scholar]
- Young M. R., Newby M., Meunier J. Relationships between morphology, dissemination, migration, and prostaglandin E2 secretion by cloned variants of Lewis lung carcinoma. Cancer Res. 1985 Aug;45(8):3918–3923. [PubMed] [Google Scholar]

