Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Apr;93(4):1740–1747. doi: 10.1172/JCI117158

Mitochondrial trifunctional protein deficiency. Catalytic heterogeneity of the mutant enzyme in two patients.

T Kamijo 1, R J Wanders 1, J M Saudubray 1, T Aoyama 1, A Komiyama 1, T Hashimoto 1
PMCID: PMC294231  PMID: 8163672

Abstract

We examined the enzyme protein and biosynthesis of human trifunctional protein harboring enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase activity in cultured skin fibroblasts from two patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. The following results were obtained. (a) In cells from patient 1, immunoblot analysis and pulse-chase experiments indicated that the content of trifunctional protein was < 10% of that in control cells, due to a very rapid degradation of protein newly synthesized in the mitochondria. The diminution of trifunctional protein was associated with a decreased activity of enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase, when measured using medium-chain to long-chain substrates. (b) In cells from patient 2, the rate of degradation of newly synthesized trifunctional protein was faster than that in control cells, giving rise to a trifunctional protein amounting to 60% of the control levels. The 3-hydroxy-acyl-CoA dehydrogenase activity with medium-chain to long-chain substrates was decreased drastically, with minor changes in activities of the two other enzymes. These data suggest a subtle abnormality of trifunctional protein in cells from patient 2. Taken together, the results obtained show that in both patients, long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency is caused by an abnormality in the trifunctional protein, even though there is a heterogeneity in both patients.

Full text

PDF
1740

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carpenter K., Pollitt R. J., Middleton B. Human liver long-chain 3-hydroxyacyl-coenzyme A dehydrogenase is a multifunctional membrane-bound beta-oxidation enzyme of mitochondria. Biochem Biophys Res Commun. 1992 Mar 16;183(2):443–448. doi: 10.1016/0006-291x(92)90501-b. [DOI] [PubMed] [Google Scholar]
  2. Coates P. M., Tanaka K. Molecular basis of mitochondrial fatty acid oxidation defects. J Lipid Res. 1992 Aug;33(8):1099–1110. [PubMed] [Google Scholar]
  3. El-Fakhri M., Middleton B. The existence of an inner-membrane-bound, long acyl-chain-specific 3-hydroxyacyl-CoA dehydrogenase in mammalian mitochondria. Biochim Biophys Acta. 1982 Nov 12;713(2):270–279. doi: 10.1016/0005-2760(82)90244-2. [DOI] [PubMed] [Google Scholar]
  4. Furuta S., Miyazawa S., Hashimoto T. Purification and properties of rat liver acyl-CoA dehydrogenases and electron transfer flavoprotein. J Biochem. 1981 Dec;90(6):1739–1750. doi: 10.1093/oxfordjournals.jbchem.a133651. [DOI] [PubMed] [Google Scholar]
  5. Furuta S., Miyazawa S., Osumi T., Hashimoto T., Ui N. Properties of mitochondria and peroxisomal enoyl-CoA hydratases from rat liver. J Biochem. 1980 Oct;88(4):1059–1070. doi: 10.1093/oxfordjournals.jbchem.a133057. [DOI] [PubMed] [Google Scholar]
  6. Gear A. R. Rhodamine 6G. A potent inhibitor of mitochondrial oxidative phosphorylation. J Biol Chem. 1974 Jun 10;249(11):3628–3637. [PubMed] [Google Scholar]
  7. Hale D. E., Thorpe C., Braat K., Wright J. H., Roe C. R., Coates P. M., Hashimoto T., Glasgow A. M. The L-3-hydroxyacyl-CoA dehydrogenase deficiency. Prog Clin Biol Res. 1990;321:503–510. [PubMed] [Google Scholar]
  8. Ikeda Y., Keese S. M., Tanaka K. Molecular heterogeneity of variant isovaleryl-CoA dehydrogenase from cultured isovaleric acidemia fibroblasts. Proc Natl Acad Sci U S A. 1985 Oct;82(20):7081–7085. doi: 10.1073/pnas.82.20.7081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Imamura S., Ueda S., Mizugaki M., Kawaguchi A. Purification of the multienzyme complex for fatty acid oxidation from Pseudomonas fragi and reconstitution of the fatty acid oxidation system. J Biochem. 1990 Feb;107(2):184–189. doi: 10.1093/oxfordjournals.jbchem.a123023. [DOI] [PubMed] [Google Scholar]
  10. Izai K., Uchida Y., Orii T., Yamamoto S., Hashimoto T. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. I. Purification and properties of very-long-chain acyl-coenzyme A dehydrogenase. J Biol Chem. 1992 Jan 15;267(2):1027–1033. [PubMed] [Google Scholar]
  11. Jackson S., Bartlett K., Land J., Moxon E. R., Pollitt R. J., Leonard J. V., Turnbull D. M. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Pediatr Res. 1991 Apr;29(4 Pt 1):406–411. doi: 10.1203/00006450-199104000-00016. [DOI] [PubMed] [Google Scholar]
  12. Jackson S., Kler R. S., Bartlett K., Briggs H., Bindoff L. A., Pourfarzam M., Gardner-Medwin D., Turnbull D. M. Combined enzyme defect of mitochondrial fatty acid oxidation. J Clin Invest. 1992 Oct;90(4):1219–1225. doi: 10.1172/JCI115983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kamijo T., Aoyama T., Miyazaki J., Hashimoto T. Molecular cloning of the cDNAs for the subunits of rat mitochondrial fatty acid beta-oxidation multienzyme complex. Structural and functional relationships to other mitochondrial and peroxisomal beta-oxidation enzymes. J Biol Chem. 1993 Dec 15;268(35):26452–26460. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. LYNEN F., HENNING U., BUBLITZ C., SORBO B., KROPLIN-RUEFF L. Der chemische Mechanismus der Acetessigsäurebildung in der Leber. Biochem Z. 1958;330(4):269–295. [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  18. Miyazawa S., Osumi T., Hashimoto T. The presence of a new 3-oxoacyl-CoA thiolase in rat liver peroxisomes. Eur J Biochem. 1980 Feb;103(3):589–596. doi: 10.1111/j.1432-1033.1980.tb05984.x. [DOI] [PubMed] [Google Scholar]
  19. Osumi T., Hashimoto T. Occurrence of two 3-hydroxyacyl-CoA dehydrogenases in rat liver. Biochim Biophys Acta. 1979 Aug 30;574(2):258–267. [PubMed] [Google Scholar]
  20. Osumi T., Hashimoto T. Peroxisomal beta oxidation system of rat liver. Copurification of enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase. Biochem Biophys Res Commun. 1979 Jul 27;89(2):580–584. doi: 10.1016/0006-291x(79)90669-7. [DOI] [PubMed] [Google Scholar]
  21. Osumi T., Hashimoto T. Purification and properties of mitochondrial and peroxisomal 3-hydroxyacyl-CoA dehydrogenase from rat liver. Arch Biochem Biophys. 1980 Aug;203(1):372–383. doi: 10.1016/0003-9861(80)90189-7. [DOI] [PubMed] [Google Scholar]
  22. Przyrembel H., Jakobs C., IJlst L., de Klerk J. B., Wanders R. J. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. J Inherit Metab Dis. 1991;14(5):674–680. doi: 10.1007/BF01799932. [DOI] [PubMed] [Google Scholar]
  23. Rhead W. J. Inborn errors of fatty acid oxidation in man. Clin Biochem. 1991 Aug;24(4):319–329. doi: 10.1016/0009-9120(91)80006-o. [DOI] [PubMed] [Google Scholar]
  24. Saudubray J. M., Mitchell G., Bonnefont J. P., Schwartz G., Nuttin C., Munnich A., Brivet M., Vassault A., Demaugre F., Rabier D. Approach to the patient with a fatty acid oxidation disorder. Prog Clin Biol Res. 1992;375:271–288. [PubMed] [Google Scholar]
  25. Steinman H. M., Hill R. L. Bovine liver crotonase (enoyl coenzyme A hydratase). EC 4.2.1.17 L-3-hydroxyacyl-CoA hydrolyase. Methods Enzymol. 1975;35:136–151. doi: 10.1016/0076-6879(75)35149-5. [DOI] [PubMed] [Google Scholar]
  26. Suzuki Y., Shimozawa N., Yajima S., Yamaguchi S., Orii T., Hashimoto T. Effects of sodium 2-[5-(4-chlorophenyl)pentyl]-oxirane-2-carboxylate (POCA) on fatty acid oxidation in fibroblasts from patients with peroxisomal diseases. Biochem Pharmacol. 1991 Feb 1;41(3):453–456. doi: 10.1016/0006-2952(91)90544-f. [DOI] [PubMed] [Google Scholar]
  27. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Uchida Y., Izai K., Orii T., Hashimoto T. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. II. Purification and properties of enoyl-coenzyme A (CoA) hydratase/3-hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase trifunctional protein. J Biol Chem. 1992 Jan 15;267(2):1034–1041. [PubMed] [Google Scholar]
  29. Wanders R. J., Duran M., Ijlst L., de Jager J. P., van Gennip A. H., Jakobs C., Dorland L., van Sprang F. J. Sudden infant death and long-chain 3-hydroxyacyl-CoA dehydrogenase. Lancet. 1989 Jul 1;2(8653):52–53. doi: 10.1016/s0140-6736(89)90300-0. [DOI] [PubMed] [Google Scholar]
  30. Wanders R. J., IJlst L., Poggi F., Bonnefont J. P., Munnich A., Brivet M., Rabier D., Saudubray J. M. Human trifunctional protein deficiency: a new disorder of mitochondrial fatty acid beta-oxidation. Biochem Biophys Res Commun. 1992 Nov 16;188(3):1139–1145. doi: 10.1016/0006-291x(92)91350-y. [DOI] [PubMed] [Google Scholar]
  31. Wanders R. J., IJlst L., van Gennip A. H., Jakobs C., de Jager J. P., Dorland L., van Sprang F. J., Duran M. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of a new inborn error of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis. 1990;13(3):311–314. doi: 10.1007/BF01799383. [DOI] [PubMed] [Google Scholar]
  32. Yamaguchi S., Orii T., Sakura N., Miyazawa S., Hashimoto T. Defect in biosynthesis of mitochondrial acetoacetyl-coenzyme A thiolase in cultured fibroblasts from a boy with 3-ketothiolase deficiency. J Clin Invest. 1988 Mar;81(3):813–817. doi: 10.1172/JCI113388. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES