Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Apr;93(4):1798–1811. doi: 10.1172/JCI117165

Direct quantification of apparent binding indices from quinidine-induced in vivo conduction delay in canine myocardium.

F N Haugland 1, S B Johnson 1, D L Packer 1
PMCID: PMC294247  PMID: 8163679

Abstract

To characterize quantitatively the quinidine (QUIN)-induced conduction delay (CD) in vivo, canine ventricular activation times were examined with an epicardial mapping technique. A high-resolution index of normalized (N) QUIN CD, derived from all 56 recording sites, was used to quantify QUIN effect. Repetitive stimulation elicited monoexponential increases in CD(N), the rates of which were a linear function of interpulse recovery interval, tr. Steady-state CD(N) was also linearly related to an exponential function of tr and drug uptake rates. The frequency-dependent properties of QUIN in 14 dogs were characterized by apparent binding and unbinding rates of ka = 7.1 +/- 3.5 x 10(6) M-1 s-1, la = 81 +/- 51 s-1 for activated, and kr = 12.6 +/- 11.3 x 10(3) M-1 s-1, lr = 0.51 +/- 0.26 s-1 for resting states. ka and la were similar to values previously derived in canine Purkinje fibers. Drug unbinding at resting potentials was faster in vivo than previously observed in vitro. The time constant of recovery from QUIN block extracted from the interpulse recovery rate was also identical to that determined from post-mature stimulus diastolic scanning. As predicted by the two-state model, similar binding rates were also derived from declining CD(N) elicited by step decreases in heart rate. These findings represent a complete quantitative description of use-dependent QUIN CD in vivo and provide a firm foundation for characterizing antiarrhythmic drug action under physiologic and pathologic conditions.

Full text

PDF
1798

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anno T., Hondeghem L. M. Interactions of flecainide with guinea pig cardiac sodium channels. Importance of activation unblocking to the voltage dependence of recovery. Circ Res. 1990 Mar;66(3):789–803. doi: 10.1161/01.res.66.3.789. [DOI] [PubMed] [Google Scholar]
  2. Bajaj A. K., Kopelman H. A., Wikswo J. P., Jr, Cassidy F., Woosley R. L., Roden D. M. Frequency- and orientation-dependent effects of mexiletine and quinidine on conduction in the intact dog heart. Circulation. 1987 May;75(5):1065–1073. doi: 10.1161/01.cir.75.5.1065. [DOI] [PubMed] [Google Scholar]
  3. Buchanan J. W., Jr, Saito T., Gettes L. S. The effects of antiarrhythmic drugs, stimulation frequency, and potassium-induced resting membrane potential changes on conduction velocity and dV/dtmax in guinea pig myocardium. Circ Res. 1985 May;56(5):696–703. doi: 10.1161/01.res.56.5.696. [DOI] [PubMed] [Google Scholar]
  4. Cohen C. J., Bean B. P., Tsien R. W. Maximal upstroke velocity as an index of available sodium conductance. Comparison of maximal upstroke velocity and voltage clamp measurements of sodium current in rabbit Purkinje fibers. Circ Res. 1984 Jun;54(6):636–651. doi: 10.1161/01.res.54.6.636. [DOI] [PubMed] [Google Scholar]
  5. Courtney K. R. Quantitative structure/activity relations based on use-dependent block and repriming kinetics in myocardium. J Mol Cell Cardiol. 1987 Mar;19(3):319–330. doi: 10.1016/s0022-2828(87)80599-0. [DOI] [PubMed] [Google Scholar]
  6. Davis J., Matsubara T., Scheinman M. M., Katzung B., Hondeghem L. H. Use-dependent effects of lidocaine on conduction in canine myocardium: application of the modulated receptor hypothesis in vivo. Circulation. 1986 Jul;74(1):205–214. doi: 10.1161/01.cir.74.1.205. [DOI] [PubMed] [Google Scholar]
  7. Fedida D., Giles W. R. Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J Physiol. 1991 Oct;442:191–209. doi: 10.1113/jphysiol.1991.sp018789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Franz M. R., Burkhoff D., Yue D. T., Sagawa K. Mechanically induced action potential changes and arrhythmia in isolated and in situ canine hearts. Cardiovasc Res. 1989 Mar;23(3):213–223. doi: 10.1093/cvr/23.3.213. [DOI] [PubMed] [Google Scholar]
  9. Franz M. R., Costard A. Frequency-dependent effects of quinidine on the relationship between action potential duration and refractoriness in the canine heart in situ. Circulation. 1988 May;77(5):1177–1184. doi: 10.1161/01.cir.77.5.1177. [DOI] [PubMed] [Google Scholar]
  10. Furukawa T., Myerburg R. J., Furukawa N., Bassett A. L., Kimura S. Differences in transient outward currents of feline endocardial and epicardial myocytes. Circ Res. 1990 Nov;67(5):1287–1291. doi: 10.1161/01.res.67.5.1287. [DOI] [PubMed] [Google Scholar]
  11. GETTES L. S., SURAWICZ B., SHIUE J. C. Effect of high K, and low K quinindine on QRS duration and ventricular action potential. Am J Physiol. 1962 Dec;203:1135–1140. doi: 10.1152/ajplegacy.1962.203.6.1135. [DOI] [PubMed] [Google Scholar]
  12. Gang E. S., Denton T. A., Oseran D. S., Mandel W. J., Peter T. Rate-dependent effects of procainamide on His-Purkinje conduction in man. Am J Cardiol. 1985 Jun 1;55(13 Pt 1):1525–1529. doi: 10.1016/0002-9149(85)90966-x. [DOI] [PubMed] [Google Scholar]
  13. Gilliam F. R., 3rd, Starmer C. F., Grant A. O. Blockade of rabbit atrial sodium channels by lidocaine. Characterization of continuous and frequency-dependent blocking. Circ Res. 1989 Sep;65(3):723–739. doi: 10.1161/01.res.65.3.723. [DOI] [PubMed] [Google Scholar]
  14. Gornick C. C., Tobler H. G., Pritzker M. C., Tuna I. C., Almquist A., Benditt D. G. Electrophysiologic effects of papillary muscle traction in the intact heart. Circulation. 1986 May;73(5):1013–1021. doi: 10.1161/01.cir.73.5.1013. [DOI] [PubMed] [Google Scholar]
  15. Grant A. O., Dietz M. A., Gilliam F. R., 3rd, Starmer C. F. Blockade of cardiac sodium channels by lidocaine. Single-channel analysis. Circ Res. 1989 Nov;65(5):1247–1262. doi: 10.1161/01.res.65.5.1247. [DOI] [PubMed] [Google Scholar]
  16. Grant A. O., Starmer C. F. Mechanisms of closure of cardiac sodium channels in rabbit ventricular myocytes: single-channel analysis. Circ Res. 1987 Jun;60(6):897–913. doi: 10.1161/01.res.60.6.897. [DOI] [PubMed] [Google Scholar]
  17. Grant A. O., Trantham J. L., Brown K. K., Strauss H. C. PH-Dependent effects of quinidine on the kinetics of dV/dtmax in guinea pig ventricular myocardium. Circ Res. 1982 Feb;50(2):210–217. doi: 10.1161/01.res.50.2.210. [DOI] [PubMed] [Google Scholar]
  18. Hansen D. E., Craig C. S., Hondeghem L. M. Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation. 1990 Mar;81(3):1094–1105. doi: 10.1161/01.cir.81.3.1094. [DOI] [PubMed] [Google Scholar]
  19. Heistracher P. Mechanism of action of antifibrillatory drugs. Naunyn Schmiedebergs Arch Pharmakol. 1971;269(2):199–212. doi: 10.1007/BF01003037. [DOI] [PubMed] [Google Scholar]
  20. Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977 Apr;69(4):497–515. doi: 10.1085/jgp.69.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hondeghem L. M., Katzung B. G. Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta. 1977 Nov 14;472(3-4):373–398. doi: 10.1016/0304-4157(77)90003-x. [DOI] [PubMed] [Google Scholar]
  22. Imaizumi Y., Giles W. R. Quinidine-induced inhibition of transient outward current in cardiac muscle. Am J Physiol. 1987 Sep;253(3 Pt 2):H704–H708. doi: 10.1152/ajpheart.1987.253.3.H704. [DOI] [PubMed] [Google Scholar]
  23. Jazayeri M. R., Van Wyhe G., Avitall B., McKinnie J., Tchou P., Akhtar M. Isoproterenol reversal of antiarrhythmic effects in patients with inducible sustained ventricular tachyarrhythmias. J Am Coll Cardiol. 1989 Sep;14(3):705–714. doi: 10.1016/0735-1097(89)90114-9. [DOI] [PubMed] [Google Scholar]
  24. Johns J. A., Anno T., Bennett P. B., Snyders D. J., Hondeghem L. M. Temperature and voltage dependence of sodium channel blocking and unblocking by O-demethyl encainide in isolated guinea pig myocytes. J Cardiovasc Pharmacol. 1989 Jun;13(6):826–835. doi: 10.1097/00005344-198906000-00004. [DOI] [PubMed] [Google Scholar]
  25. Kojima M., Ban T. Nicorandil shortens action potential duration and antagonises the reduction of Vmax by lidocaine but not by disopyramide in guinea-pig papillary muscles. Naunyn Schmiedebergs Arch Pharmacol. 1988 Feb;337(2):203–212. doi: 10.1007/BF00169249. [DOI] [PubMed] [Google Scholar]
  26. Lee K. S., Hume J. R., Giles W., Brown A. M. Sodium current depression by lidocaine and quinidine in isolated ventricular cells. Nature. 1981 May 28;291(5813):325–327. doi: 10.1038/291325a0. [DOI] [PubMed] [Google Scholar]
  27. Lindmar R., Löffelholz K., Weide W. Inhibition by pentobarbital of the acetylcholine release from the postganglionic parasympathetic neuron of the heart. J Pharmacol Exp Ther. 1979 Aug;210(2):166–173. [PubMed] [Google Scholar]
  28. Litovsky S. H., Antzelevitch C. Rate dependence of action potential duration and refractoriness in canine ventricular endocardium differs from that of epicardium: role of the transient outward current. J Am Coll Cardiol. 1989 Oct;14(4):1053–1066. doi: 10.1016/0735-1097(89)90490-7. [DOI] [PubMed] [Google Scholar]
  29. Litovsky S. H., Antzelevitch C. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ Res. 1988 Jan;62(1):116–126. doi: 10.1161/01.res.62.1.116. [DOI] [PubMed] [Google Scholar]
  30. Morady F., DiCarlo L. A., Jr, Baerman J. M., Krol R. B. Rate-dependent effects of intravenous lidocaine, procainamide and amiodarone on intraventricular conduction. J Am Coll Cardiol. 1985 Jul;6(1):179–185. doi: 10.1016/s0735-1097(85)80272-2. [DOI] [PubMed] [Google Scholar]
  31. Morady F., Kou W. H., Kadish A. H., Nelson S. D., Toivonen L. K., Kushner J. A., Schmaltz S., de Buitleir M. Antagonism of quinidine's electrophysiologic effects by epinephrine in patients with ventricular tachycardia. J Am Coll Cardiol. 1988 Aug;12(2):388–394. doi: 10.1016/0735-1097(88)90411-1. [DOI] [PubMed] [Google Scholar]
  32. Nademanee K., Stevenson W. G., Weiss J. N., Frame V. B., Antimisiaris M. G., Suithichaiyakul T., Pruitt C. M. Frequency-dependent effects of quinidine on the ventricular action potential and QRS duration in humans. Circulation. 1990 Mar;81(3):790–796. doi: 10.1161/01.cir.81.3.790. [DOI] [PubMed] [Google Scholar]
  33. Nattel S. Interval-dependent effects of lidocaine on conduction in canine cardiac Purkinje fibers: experimental observations and theoretical analysis. J Pharmacol Exp Ther. 1987 Apr;241(1):275–281. [PubMed] [Google Scholar]
  34. Nattel S., Jing W. Rate-dependent changes in intraventricular conduction produced by procainamide in anesthetized dogs. A quantitative analysis based on the relation between phase 0 inward current and conduction velocity. Circ Res. 1989 Dec;65(6):1485–1498. doi: 10.1161/01.res.65.6.1485. [DOI] [PubMed] [Google Scholar]
  35. Nattel S. Relationship between use-dependent effects of antiarrhythmic drugs on conduction and Vmax in canine cardiac Purkinje fibers. J Pharmacol Exp Ther. 1987 Apr;241(1):282–288. [PubMed] [Google Scholar]
  36. Packer D. L., Grant A. O., Strauss H. C., Starmer C. F. Characterization of concentration- and use-dependent effects of quinidine from conduction delay and declining conduction velocity in canine Purkinje fibers. J Clin Invest. 1989 Jun;83(6):2109–2119. doi: 10.1172/JCI114124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Peon J., Ferrier G. R., Moe G. K. The relationship of excitability to conduction velocity in canine Purkinje tissue. Circ Res. 1978 Jul;43(1):125–135. doi: 10.1161/01.res.43.1.125. [DOI] [PubMed] [Google Scholar]
  38. Ranger S., Talajic M., Lemery R., Roy D., Nattel S. Amplification of flecainide-induced ventricular conduction slowing by exercise. A potentially significant clinical consequence of use-dependent sodium channel blockade. Circulation. 1989 May;79(5):1000–1006. doi: 10.1161/01.cir.79.5.1000. [DOI] [PubMed] [Google Scholar]
  39. Schwarz W., Palade P. T., Hille B. Local anesthetics. Effect of pH on use-dependent block of sodium channels in frog muscle. Biophys J. 1977 Dec;20(3):343–368. doi: 10.1016/S0006-3495(77)85554-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sheets M. F., Hanck D. A., Fozzard H. A. Nonlinear relation between Vmax and INa in canine cardiac Purkinje cells. Circ Res. 1988 Aug;63(2):386–398. doi: 10.1161/01.res.63.2.386. [DOI] [PubMed] [Google Scholar]
  41. Snyders D. J., Hondeghem L. M. Effects of quinidine on the sodium current of guinea pig ventricular myocytes. Evidence for a drug-associated rested state with altered kinetics. Circ Res. 1990 Feb;66(2):565–579. doi: 10.1161/01.res.66.2.565. [DOI] [PubMed] [Google Scholar]
  42. Starmer C. F., Grant A. O. Phasic ion channel blockade. A kinetic model and parameter estimation procedure. Mol Pharmacol. 1985 Oct;28(4):348–356. [PubMed] [Google Scholar]
  43. Starmer C. F., Grant A. O., Strauss H. C. Mechanisms of use-dependent block of sodium channels in excitable membranes by local anesthetics. Biophys J. 1984 Jul;46(1):15–27. doi: 10.1016/S0006-3495(84)83994-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Starmer C. F., Packer D. L., Grant A. O. Ligand binding to transiently accessible sites: mechanisms for varying apparent binding rates. J Theor Biol. 1987 Feb 7;124(3):335–341. doi: 10.1016/s0022-5193(87)80120-0. [DOI] [PubMed] [Google Scholar]
  45. Steiner C., Kovalik A. T. A simple technique for production of chronic complete heart block in dogs. J Appl Physiol. 1968 Nov;25(5):631–632. doi: 10.1152/jappl.1968.25.5.631. [DOI] [PubMed] [Google Scholar]
  46. Tande P. M., Mortensen E., Refsum H. Rate-dependent differences in dog epi- and endocardial monophasic action potential configuration in vivo. Am J Physiol. 1991 Nov;261(5 Pt 2):H1387–H1391. doi: 10.1152/ajpheart.1991.261.5.H1387. [DOI] [PubMed] [Google Scholar]
  47. Villemaire C., Savard P., Talajic M., Nattel S. A quantitative analysis of use-dependent ventricular conduction slowing by procainamide in anesthetized dogs. Circulation. 1992 Jun;85(6):2255–2266. doi: 10.1161/01.cir.85.6.2255. [DOI] [PubMed] [Google Scholar]
  48. Wallace A. G., Cline R. E., Sealy W. C., Young W. G., Jr, Troyer W. G., Jr Electrophysiologic effects of quinidine. Studies using chronically implanted electrodes in awake dogs with and without cardiac denervation. Circ Res. 1966 Nov;19(5):960–969. doi: 10.1161/01.res.19.5.960. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES